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Introduction 

Overview 
The Standard Model (SM) of high energy physics has been one of the great syntheses of 

the human intellect. It began about a century ago with the discovery of the electron, which was 

the first fundamental point like particle to be discovered. In the last decade, the elusive top quark 

and the τ neutrino have been observed.  The sole remaining undiscovered particle predicted by 

the SM is the Higgs particle, whose vacuum field is believed to give mass to all the particles in 

the Universe. This text concentrates on the search for the Higgs particle at proton – (anti)proton 

colliders, those accelerators which collide protons and (anti)protons head on.  Indeed, there are 

complementary efforts at electron – positron colliders, but they are outside the scope of this 

book.  

In outline, Chapter 1 concerns itself with a summary of the Standard Model (SM), giving 

the particles comprising the SM and their interactions. Mathematical detail is relegated to 

Appendix A. Chapter 1 closes with twelve questions which are unanswered in the SM but which 

appear to be of fundamental importance. The next four Chapters are concerned with the two 

initial questions that refer to electroweak symmetry breaking and the Higgs boson. 

In Chapter 2 we explore a “generic” general purpose detector, which is representative of 

those in use at proton – (anti)proton colliders. Specifically, we examine the extent to which the 

SM particles introduced in Chapter 1 can be cleanly identified and measured. The accuracy with 

which the vector momentum and position of a SM particle can be measured is very important, as 

it will influence search strategies for the Higgs.  

Chapter 3 is concerned with the specific issue of particle production at a proton – (anti) 

proton collider. The relevant formulae are given that will enable the student to estimate reaction 

rates for any process. In addition, the COMPHEP program can be used to then refine the initial 

estimates. However, students are strongly encouraged to start with the ‘back of the envelope” 

estimate before invoking COMPHEP or any other Monte Carlo program. COMPHEP is 

explained in Appendix B and is readily available to the student, as discussed in the section on 

tools below. Kinematic details are placed in Appendix C. 

Chapter 4 follows up with a discussion of how recent data taken at colliders informs on the 

predictions of the SM. This section is a snapshot of the present state of the art in the physics of 

high transverse momentum phenomena as explored at proton – (anti)proton colliders. 
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In Chapter 5 we start to venture beyond the bounds of current data. This entire chapter is 

devoted to the upcoming search for the elusive Higgs boson. Much of the presentation concerns 

itself with the Large Hadron Collider (LHC) at the European Center for Nuclear Research 

(CERN) because this facility, slated to become operational in 2007, was specifically designed to 

search for, and discover the Higgs scalar (spin zero). Nevertheless, we will see that the search 

may be long and arduous. 

Finally, in the last Chapter, we return to the remaining ten fundamental questions raised in 

the first Chapter. Some hint of theories beyond the SM and their consequences is given. In 

particular, the possibility that a new symmetry of Nature, a super-symmetry (SUSY) relating 

space-time and particle spin, might be discovered in the near future is discussed.  

Scope 
The mathematical complexity used here is no more than calculus. However, the concepts 

used require a good knowledge of quantum mechanics, special relativity and some acquaintance 

with field theory.  Knowledge of Feynman diagrams will be essential, in part because examples 

of Feynman diagrams are given in the text and also because COMPHEP supplies diagrams for 

any process which is specified. The intended audience is then advanced graduate students or 

research workers in particle physics. Full theoretical rigor has, however, been sacrificed in an 

attempt to reach as wide and as young a group of students as possible. 

Units 
In this text, we will use units that are common in high energy physics. The Planck constant, �

, has the dimensions of momentum (P) times length (x) or energy (E) times time (t). (Recall the 

Heisenberg uncertainty relations ,xx P E t∆ ∆ ≥ ∆ ∆ ≥� � ). Thus  c� has the dimension energy 

times length and numerically is 0.2 GeV*fm. The energy unit used herein is the electron volt 

(eV), the energy gained by an electron in dropping through a potential of 1 Volt, and 1 GeV = 

109 eV. The unit of length which is most commonly used is 1 fm = 10-13 cm which is the 

approximate size of a proton.   

Other quantities with energy units are proportional to mass (m), mc2, and momentum, cP. 

We adopt units with 
�

= c = 1. In these units mass is in given in GeV, as is momentum. For 

example, the proton mass is 0.938 GeV. Length, x, and ct have the dimensions of inverse energy, 

using c� . We will use the notation [ ] to indicate the dimensions of a quantity. It should be 

easy for the reader to restore units by replacing P with cP, m with mc2 and so forth 
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Recall that the coupling constants indicate the strength of the interaction and characterize a 

particular force. For example, electromagnetism has a coupling constant which is the electron 

charge, e and a “fine structure” constant ce �πα 4/2=  that is dimensionless. The electromagnetic 

potential energy is rereVrU /)()( 2==  and V(r) is the electromagnetic potential. The 

dimensions of e2 are then energy times length, the same as those of c
�

. Thus, in the units we 

adopt, 1c= =
�

, e is also dimensionless. With α ~ 1/137, we find e ~ 0.303.  Coupling constants 

for the two other forces, the strong and the weak, will be indicated by gi, and the corresponding 

fine structure constants by αi with i = s, W. 

The units for cross section, σ, which we will use in this text are barns (1 barn = 10-24 cm2). 

Note that 2 2( ) 0.4c GeV mb=�  where 27 21 10mb cm−= . The units used in COMPHEP are pb = 

10-12 b for cross section and GeV for energy units. As an example, at a center of mass, C.M., 

energy, s , of 1 TeV = 1000 GeV, in the absence of dynamics and coupling constants, a cross 

section scale of s/1~σ  ~ 400 pb is expected simply by dimensional arguments. 

Tools 
In this book we have used a single computational tool, COMPHEP, extensively both in the 

examples given in the text proper, and in the exercises. The aim was to expand the range of the 

text from a slightly formal academic presentation to a more interactive mode for the student, 

giving “hands on” experience. The plan was that the student would work the examples given in 

the text and the exercises and then be fully enabled to do problems on her own. COMPHEP runs 

on the Windows platform, which was why it was chosen. The aim was to give it maximum 

applicability. 

The COMPHEP program is freeware. We have taken the approach in the text of first 

working through the algebra. That way, the reader can make a “back of the envelope” calculation 

of the desired quantity. Then she can use COMPHEP for a more detailed examination of the 

question. The use and description of COMPHEP is explained in detail in Appendix B, where a 

fully worked out example is given. A web address where the executable code (zipped) and a 

users manual are available is also shown in Appendix B. These items are also posted by the 

author at:  http://uscms.fnal.gov/uscms/dgreen . Freeware to unzip files can be found at 

http://www.winzip.com/ and http://www.pkware.com/. 
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A word now about the availability of references. The use of Internet archives is rather 

advanced in high energy physics, and we have attempted to make them easily available to the 

reader. The reader with Web access will have very immediate access to the research literature.  

One of the best places to search is at the Los Alamos site; http://xxx.lanl.gov. Looking under 

“Physics” to “High Energy Physics – Experiment” (hep-ex) allows us to search on author, 

explore new preprints, recent preprints, or abstracts or search in topics of our choice using the 

“find” feature. Many of the references cited at the end of each chapter of the text refer to this 

site, making the papers then directly available to the student.  

Free programs to read the file formats used in archiving the research papers,  .ps and .pdf, 

is also available on the web. For example, “pdf” files are read by freeware available at 

http://www.adobe.com/ . “Postscript”, or .ps, files can be read using the download from 

http://www.wisc.edu/~ghost/. 

 Another useful site, which is extensively quoted in the references, is the Fermilab preprint 

library, http://fnalpubs.fnal.gov where the Fermilab references can be downloaded. Clicking on 

“preprints” and then on “search” you can look for authors and or titles and then download the 

full paper. An exercise is included in Chapter 1 that gives the student practice in accessing the 

literature. 

A compendium of data in high energy physics can be found at the particle Data Group site,  

http://pdg.lbl.gov . Finally, available at http://www.AnnualReviews.org  are full review articles, 

which allow the student to explore some of the longer review articles given in the references. 

Our aim is obviously to make the information more immediate for the reader.  In addition, 

some of the references given at the end of the six sections of this text are actual books. They, in 

turn, are rich sources of knowledge within themselves and sources of additional primary 

references. 
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1. The Standard Model and Electroweak Symmetry Breaking  
 
“It is better to know some of the questions than all of the answers” – James Thurber 
 

“No theory is good except on condition that one use it to go on beyond.” - André Gide  

1.1 The Energy Frontier 

 High energy physics concerns itself with the study of fundamental particles and the 

interactions among them. Progress in high energy physics in the past was often due to an 

increase in the available energy for the production of massive particles. Since colliding two 

objects head on maximizes the total center of mass (C.M.) energy and hence the energy available 

for new particle production, we specialize in this text to colliders as opposed to beams striking 

“fixed” targets at rest in the laboratory. We are also interested in high mass phenomena, which 

typically lead to particles at high momentum transverse to the axis of the colliding particles. 

Thus, we concentrate on the very rare high transverse momentum/energy (PT or ET) reactions at 

colliders.  

In Fig. 1.1 we show the available energy for making particles as a function of the year 

when an accelerator began operation for the last ~ 30 years of high energy physics research. Note 

the exponential increase in energy as a function of time. That increase has driven the rapid 

progress in the field. There are two distinct curves, one for proton – (anti)proton colliders and 

one for electron - positron colliders. In this text we must, in the interests of brevity, confine 

ourselves to the former. Also in Fig. 1.1 we show the masses of the quarks and force carriers 

(gauge bosons) with masses > 0.1 GeV and a schematic representation of the range of possible 

Higgs boson masses.  

Note particularly that there has been a steady stream of discoveries of new fundamental 

particles of ever-heavier mass. This progression culminated recently in the discovery of the top 

quark, of mass 175 GeV, at Fermilab in 1996. Looking into the future, the Large Hadron Collider 

(LHC) at the European Center for Nuclear Research (CERN), has been designed to fully cover 

the mass range where the Higgs boson is thought to exist. Therefore, it is timely to briefly 

summarize the great accomplishment of particle physics, which is the Standard Model (SM) of 

fundamental processes. Following that, we can look ahead to the search for the Higgs boson, 

which will be made possible by yet another advance in the energy frontier. Note that the 

constituent C.M. energy of Fig.1.1 is less than the proton- (anti)proton C.M. energy for reasons 

we will explain in Chapter 4 and Appendix C. 
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Figure 1.1: The available C.M. energy as a function of the year of the start of operations of an accelerator. Note the 
two parallel exponential trajectories for hadron, or proton – (anti)proton, and lepton, or electron – positron, colliders.  
The masses of the quarks and gauge bosons are also shown. 

1.2 The Particles of the Standard Model 

In the last century, relativity and quantum mechanics were combined together to create 

quantum field theory. This has lead to many insights. For example each particle is required to 

have an anti-particle. The first antiparticle to be discovered was the positron, the partner of the 

electron. In what follows we implicitly assume that each particle has an antiparticle partner 

indicated as, for example, q  being the antiquark partner of the quark, q. 

The other great advance of the last century, general relativity, has resisted inclusion within 

the SM framework. Thus, at present the SM of high energy physics does not contain gravity as a 

fundamental quantum theory. Clearly, then the SM is not a complete theory of Nature. 

All three of the Standard Model forces are renormalizable, meaning that calculations in 

quantum field theory give finite results, while gravity does not.  This can be anticipated by 

observing that classically the “fine structure” constant for gravity, Grα , increases as the square of 

the mass scale. This follows from noting that the gravitational potential energy, UG(r) = GNM2/r, 

depends on mass in comparison to the electrical energy UEM(r) = e2/r. The quantity GN is 

Newton’s gravitational constant. The fine structure constants of the forces appearing in the SM, 

such as electromagnetism, where 137/1~4/2 ce �πα = , are dimensionless and mass 

independent. The gravitational analogue, 2 / 4Gr NG M cα π= � , is not. 
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The SM particles consist of the spin ½ (i.e. J = intrinsic angular momentum = � /2) 

fermions (obeying Fermi-Dirac statistics) which are the matter particles and the spin 1 bosons 

(obeying Bose-Einstein statistics), which are the force carriers that communicate the forces 

between the fermions. A listing of these particles as understood today is given in Fig. 1.2. The 

strongly interacting fermions are called quarks. They are organized as “doublets” with electric 

charge Q/e, in units of the electron charge, e, of 2/3 and –1/3. The fermions with only 

electroweak interactions are called leptons. The uncharged leptons, which then have only weak 

interactions, are called neutrinos.   

 
Figure 1.2: The fundamental particles of the SM. The force carriers are spin 1 bosons. The particles of matter are 
spin ½ fermions. The spin is indicated by the value of J, while Q/e is the electric charge in units of e. 

Let us first consider the fermions, beginning with the quarks. The lightest quarks, the up (u) 

and down (d) quarks, combine to form familiar bound states like the neutron (udd) and proton 

(uud) which are held together by the strong force. The quarks are believed to be bound 

permanently in the proton, say, by the strong force. Ordinary matter is made up of the u and d 

quarks, which comprise the first “generation”. The heavier quarks have larger masses, see Fig. 

1.1, but otherwise respond universally to the strong force. They are distinguished by a “flavor” 

quantum number, which is the weak interaction analogue of “electric charge”. These heavier 

quarks comprise the second and third generation. particles containing strange quarks were seen 

in cosmic ray events in the 1950’s. The charm quark (c) was discovered in 1974, the bottom (b) 

quark in 1977 and the top quark (t) in 1996. 

The leptons are the fermions that do not have the strong “charge” (called “color”) as the 

quarks do. The lightest charged lepton, the electron, has been known for more than a century. It 

was discovered by J. J. Thompson in 1896. The leptons in Fig.1.2 are negatively charged; the 

electron is defined to be a particle, the positron an antiparticle. The other charged leptons appear 

to be simply heavier “copies” of the electron all having the same interactions. (“who ordered 
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that?”, as I.I. Rabi was heard to say when the muon was discovered). The charged lepton masses 

for τµ ande ,, are 0.5 MeV, 0.105 GeV, and 1.78 GeV respectively. As with the quarks, the 

leptons comprise pairs of three recurring generations. The tau lepton was discovered in 1975. 

The uncharged leptons are called neutrinos and they interact only weakly, having neither 

“color” nor electric charge. The radioactive “beta decay” of nuclei has also been known for a 

century. These decays were the first evidence for the existence of a “weak force” which caused 

the conversion of a proton into a neutron and a positron.  Neutrinos were hypothesized to also be 

emitted in these weak decays, ep n e υ+→ + + , but their very low interaction probability made 

their direct experimental detection a fairly recent phenomenon. The electron neutrino was 

observed in 1953 near a reactor, which supplied a copious source of neutrinos. The tau neutrino 

was just now seen at Fermilab in 2000. The masses of the neutrinos are measured to be very 

small and for our present purposes are assigned a zero mass. Neutrinos also have “flavor” and 

come in three distinct varieties, paired to the charged leptons, as seen in Fig. 1.2. 

We now turn to the force carriers of the SM. The forces are carried by vector (J = 1)  

bosons. The massless quantum of the electromagnetic field, the photon, has also been known as a 

fundamental particle for almost a century following the explanation of the photoelectric effect by 

Einstein in 1905. The strong force is carried by massless “gluons” (g) that carry “color”, the 

strong force analogue of the charge of electromagnetism. The electromagnetic force is carried by 

the neutral photon (γ), and the weak force by the  W+ Zo and W- , which carry “flavor”, the weak 

force analogue of electric charge. 

The strong force is needed to explain why the Rutherford nucleus is bound, since 

electrostatic repulsion of the protons in the nucleus would otherwise break it apart. Gluons were 

first seen experimentally in the 1970’s when they were radiated in electron - positron collisions 

yielding a quark-antiquark pair and a gluon in the final state, e e q q g+ −+ → + + . There are 

eight gluons, each with a distinct color combination.  

The weak force is responsible for radioactive decay, where the nuclear charge changes 

accompanied by the emission of an electron and an antineutrino, en p e υ−→ + + . The force was 

initially thought to be weak because the decay rates for this “beta decay” were very slow with 

respect to those of electromagnetic decays.  A complete understanding of the dynamics of weak 

interactions awaited the discovery of the W and Z bosons at CERN in 1983. The masses of the 

W and Z are ~ 80 and 91 GeV respectively. The mechanism by which the W and Z obtain this 

mass is called the Higgs mechanism. The search for the Higgs is the central theme of this book.  
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The electromagnetic quantum, or photon, couples to charge, the gluons couple to “color” 

charge and the W and Z bosons couple to weak “flavor” charge. Gluons are “flavorblind”, so all 

quarks interact with gluons with the same forces up to the effects of their different masses. The 

“flavor” quantum number is therefore conserved in the strong interactions, which means that 

heavy flavors must be strongly produced in particle-antiparticle pairs. The weak interactions are 

“colorblind” so that the three colors of quark all have the same weak interactions. 

At this time the only undiscovered particle known to be required in the SM is the Higgs 

boson. This is a hypothesized to be a fundamental spin 0 field quantum, one that does not appear 

in Fig. 1.2. It is invented to be responsible for giving mass not only to the W and Z bosons but 

also to the fermions of the SM. This brief introduction completes the inventory of the “periodic 

table” of the SM of high energy physics, indicating all the known fundamental particles. 

There are many experimental facts that are simply put into the SM “by hand” because the 

fundamental reason for them is not yet understood. For example, charge quantization is imposed; 

all electric charges, Q, appear in 1/3 units of the electron charge e.  Proton stability is put in by 

hand; there is no fundamental dynamical reason known why protons do not decay.  In contrast, 

“color” and charge are associated with an exact symmetry for the strong and electromagnetic 

interactions. Thus we expect charge and “color” to be conserved rigorously.  

There are observed to be three “generations” of quarks and leptons, as indicated 

schematically in Fig. 1.2. The reason for the existence of three and only three “generations”, 

distinguished only by a “flavor” quantum number such as strangeness (s), charm (c), beauty (b), 

or top (t) is unknown.  

The charge changing (beta decay) weak interactions, mediated by the charged W bosons, 

do not conserve flavor. Thus, the heavy quarks and leptons ultimately decay to the u, d and e 

familiar to us as the constituents of ordinary matter. The most likely charge changing quark 

transitions are contained within a generation; u -> d + W+, c � s + W+ and t � b + W+. The 

strength of these charge changing quark transitions is nearly the same as the strength of the 

charge changing lepton transitions, , ,ee W W Wµ τν µ ν τ ν− − − − − −→ + → + → +  embodied in 

the universal Fermi decay constant G. The favored quark and lepton transitions can be viewed as 

a downward transition in Fig.1.2 with accompanying W emission. 

As discovered in the 1970’s, there are also neutral weak interactions mediated by the Zo. 

There are no flavor changing neutral weak interactions by construction; they are required to be 

“diagonal” in flavor. For example, there are no c � u + Zo.  The Z boson decays into flavor pairs 

of quarks and leptons, but, for example, oZ cu→  is not allowed nor are µ++e- decays. In Fig.1.2 
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there are no “horizontal” neutral weak transitions.  Another example is γµ e→/  which is not 

allowed because flavor is not conserved and charge does not change. The experimental upper 

limit of the muon decay probability into this final state is 2 x 10-11, which is indeed small. 

1.3 Gauge Boson Coupling to Fermions 

So far, the SM particles have been given more or less as static objects lodged in the high 

energy physics “table of the elements”. To bring them to life we need to explore their dynamics. 

There is a great organizing principle for interactions in the SM called “gauge symmetry”. We 

will not proceed from this first principle, but will take a short cut and move ahead by exploiting 

the analogy to the very successful field theory of electromagnetism. Therefore, as with 

electromagnetism, we expect massless vector boson quanta universally coupled to the fermions. 

Another force that is very familiar to us is gravity. General relativity asserts that Physics is 

the same in any general coordinate system. That in turn requires the existence of a metric tensor 

or spin 2 massless “graviton” quantum coupled universally to mass with Newton’s coupling 

constant = GN. 

Therefore we again, by analogy, might expect massless vector quanta with universal 

coupling. What, precisely, specifies the interaction of the bosons with the fermions? We again 

appeal to electromagnetism. In classical mechanics in the Hamiltonian formulation, the student 

has presumably seen that the free particle Hamiltonian is converted to one describing fermions 

interacting with photons by the replacement of the momentum P
�

 by AeP
��

−  where A
�

 is the 

vector potential of the electromagnetic field.  

The formulation of interactions in non-relativistic quantum mechanics is the same, where 

∂→ �iP  is the classical to quantum replacement, as should also be familiar to the student. To 

describe quantum fields we will use ψ for fermion (J = ½) fields, φ  for scalar (J = 0) fields, and 

ϕ  for vector (J = 1) gauge fields in this text. For masses, m is used for fermions, M for bosons. 

Therefore to describe electromagnetic interactions the ordinary derivative µ∂  is replaced by the 

“covariant” derivative µD  in the free particle Lagrangian. The Greek subscript µ is used for 

indices running from 1 to 4 as is standard notation for relativistic equations. 

                                                           µµµµ ieAD −∂=→∂  1.1 

The photon couples to all the charged pairs that exist in the SM. The fundamental 

interaction vertices, which appear in the Feynman diagrams, contain 2 fermions and a boson with 

a coupling strength of e in the reaction amplitude. The strength of the coupling is universal and 

is, 2Qα  in the reaction rate where the charge, Q, of the quark or lepton was shown in Fig. 1.2. 
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                                                                       −+
��γγ ,qq  1.2 

The strong interactions have a very similar coupling scheme of the massless colored gluons 

to the colored quarks. The strong coupling constant is gs, with strong fine structure constant sα , 

which has a value ~ 0.1, about 14 times larger than the electromagnetic coupling, as befits the 

strong force. The Feynman vertices for the strong force have the gluon, g, coupling to quark- 

antiquark pairs. The amplitude is proportional to gs. 

                                                                           qgq  1.3 

For the weak force, there are charge changing, beta decay, interactions caused by the 

charged W bosons and neutral weak interactions mediated by the neutral Z.  In fact, we now 

realize that the “weak” interactions are not intrinsically weak. They are, indeed, unified with 

electromagnetism and have the roughly the same strength. Therefore, we speak of the unified 

“electroweak” force.  In fact, the fine structure constant for the weak force is 30/1~Wα and the 

unification of the forces is embodied in the relationship, παθ 4/,sin 2
WWWW gge == , defined by 

the Weinberg angle, Wθ , a quantity whose magnitude is of order one. The value of the Weinberg 

angle is not predicted by the SM and must be measured experimentally.  It has the observed 

value, sin 0.475Wθ = . 

The interaction vertices for the charged and neutral weak interactions are: 

                                                 �� ν+−− WqqW ,' , ���� ννZZqZq ,, −+  1.4 

In general, the W can couple to all charged quark pairs, 'qq . However, as stated before, the 

most probable pairs are, btWandscWduW −−− ,, . The coupling of the Z is to flavorless pairs of 

quarks and leptons, as mentioned above. 

The W boson must have a large mass in order to make the interaction appear to be weak 

and short ranged. The Yukawa form of the interaction potential of a massive vector boson of 

mass M ~ 1/λ (λ is the Compton wavelength) is, V(r) ~ [exp(-r/λ)/r] which is weak at large r due 

to the exponential factor but is roughly Coulomb like, V(r) ~ 1/r for r << λ.  The effective range 

of the force is λ ~ 0.0025 fm for an 80 GeV W mass. At an energy scale of 1 GeV, the 

exponential reduction factor is about 10-36, which explains why nuclear beta decay appears to be 

weak (long lifetimes, small decay rates). It required the advent of accelerators of sufficient 

energy, comparable to the W mass, for us to realize that electromagnetism and weak interactions 

were aspects of the same force, exhibiting the same intrinsic strength.  

 In non-relativistic quantum mechanics the reaction matrix element is the interaction 

potential bracketed by free plane wave initial and final states in the Born approximation. The 

amplitude is thus the Fourier transform of the interaction potential. We appeal again to the case 
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of electromagnetism because it should already be familiar to the student. The Coulomb potential, 

V(r) ~ 1/r, and the photon “propagator”, V(q) ~ 1/q2 for the massless photon should be familiar 

where q is the magnitude of the difference of  vector momentum between the initial and final 

fermion states, the “momentum transfer”. For example, Rutherford scattering has a reaction 

amplitude ~ V(q), or a cross section with characteristic behavior, ~ 4/1 q .  

For a particle of mass M, the Fourier transform again gives the transition matrix element, 

A, in momentum transfer, or q, space. The range λ  is ~ 1/M so that heavy quanta are localized 

in space and have small reaction rates, 422 /1~)(~|~| MqVAΓ , for q << M.  

 2 2( ) ~ / , ( ) ~ 1/( )MrV r e r V q q M− +  1.5 

1.4 Gauge Boson Self Couplings 

We assume in what follows that all ordinary derivatives that appear in the free particle 

Lagrangian are to be replaced by “covariant derivatives” which contain the coupling constants 

and the fields of the gauge bosons. This procedure is done in analogy to electromagnetism. There 

is an immediate implication of the gauge prescription for replacement of an ordinary derivative 

by a covariant derivative in the Lagrangian. The term in the Lagrangian representing the free 

particle kinetic energy for a boson field is quadratic in the field and the derivative. This follows 

from the relativistic relationship of energy, momentum, and mass (see Appendix C) ; 
222 , MPPMPE =+= µ

µ , and the quantum mechanical operator replacement, ∂→ iP  which 

then yields the Klein-Gordon Lagrangian density appropriate to bosons, φφφφ 2)( M−∂∂= ∗
� , 

which has a “kinetic energy” term and a mass term. 

Therefore, for a vector gauge field, ϕ , with coupling constant g, the free kinetic energy 

under gauge replacement, gZWigD ,,, =−∂= ϕϕ , yields trilinear and quartic couplings, as 

shown schematically in Eq.1.6. For the familiar case of electromagnetism, since the photon has 

no electric charge, these self-couplings are absent. However, for the gluons, which carry color 

charge, and the weak bosons, which possess flavor charge, these couplings are predicted in the 

SM and lead to measurable cross sections due to the new interaction terms in the Lagrangian 

density for interactions, I� .  

 

ϕϕϕϕϕϕϕ
ϕϕϕϕ
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I ∂
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�
 1.6 

Although self-coupling is absent for photons, this situation is not completely novel in 

classical physics. An example, which should be familiar to the student, appears in general 

relativity. The binding energy of gravity must have mass by the equivalence principle, since all 
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energy is equivalent to mass. Thus the gravitational field itself gravitates; it has gravitational 

“charge” = mass. In general relativity this results in classical non-linear field equations. 

 In the case of W, Z, and g, by analogy with gravity, the fact that they carry “charges” 

means that they self-couple. These interactions between the gauge bosons exist, even in the 

absence of matter (fermions).  They are indicated schematically in Eq.1.7, which represent the 

fundamental vertices that can occur in a Feynman diagram. 

ggggggg,  

                                                           ZWWWW −+−+ ,γ  1.7 
−+−+−−+−+ WWWWZZWWZWWWW ,,, γγγ  

We have just completed a whirlwind summary of the SM. It is at this point that we can start 

to join current research in high energy physics. In this text we will use the computer code 

COMPHEP, developed at Moscow State University, to get numerical results for SM processes. 

The code can be used to evaluate both decays and 2 body collisions into any number of final 

states. It is available in a Win98 or higher version that will run on any personal computer using 

this most common of operating systems, Windows. The student is very strongly encouraged to 

download the code, read the users manual, do the exercises of Appendix B, and from then on 

follow and reproduce the examples shown in the text. The student can, in this way, get a “hands 

on” experience of up to date research in high energy physics and enhance the utility of the text 

per se. 

There is recent strong experimental evidence for the existence of triple gauge boson 

couplings from electron-positron collider experiments. In the particular case of WW pair 

production in electron – positron annihilations, the Feynman diagrams (available in COMPHEP) 

are shown in Fig. 1.3. Triple W+W-γ and W+W-Z couplings, of the photon and the Z to W pairs, 

are involved.  

 

 
Figure 1.3: Diagrams for electron – positron annihilation into W pairs in COMPHEP. 

The cross section given by COMPHEP is shown below as a function of the available C.M. 

energy. Note the rise from threshold at ~ twice the W mass. Since the W is unstable under weak 
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decay, it has a finite lifetime τ and hence a finite mass width ~ /τΓ � . This width makes for a 

slow rise of the cross section from the threshold for W pair production.  

 

 
Figure 1.4: Monte Carlo program results for the WW cross section as a function of C.M. energy in electron-positron 
annihilations. 

Experimental data from the CERN Large Electron-Positron collider (LEP) are shown in 

Fig. 1.5. The agreement with the COMPHEP prediction (Fig. 1.4) is good, indicating the 

experimental confirmation of the predicted triple gauge boson couplings. We also see that the 

cross section for simple neutrino exchange is larger than the full SM cross section. Therefore, a 

quantum mechanical destructive interference between amplitudes is required to describe the 

experimental data. The COMPHEP tool has thus let us quickly get up to speed in examining 

current results in high energy physics. 
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Figure 1.5: Data [ ref.1, with permission] from the L3 experiment at LEP on the cross section for WW pair 
production in electron-positron annihilations. There is a ZWW coupling (Fig.1.3) which is required to describe the 
data properly. 

What about the predicted quartic couplings? The LEP facility at CERN has an energy that 

is insufficient to produce three heavy gauge bosons, so we have, as yet, no data to check against 

the predicted quartic couplings except in the case where the third boson is a photon. The triple 

gauge boson final states are produced by way of diagrams some of which contain quartic gauge 

boson couplings. The student should verify that assertion by looking at the Feynman diagrams 

for electron + positron � WWZ in COMPHEP.  

The observation of these processes at the predicted cross section would be an important 

confirmation of the SM. However, the data taking await a decision to build a new energy frontier 

accelerator to extend the electron-positron collider C.M. energy range shown in Fig.1.1. The 

proposed device is called the Linear Collider (LC). A C.M. energy of > 251 = 80 + 80 + 91 GeV 

is needed to make ZWW, as seen in Fig.1.6. 
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Figure 1.6: Cross sections [ref. 2, with permission] in fb, = 0.001 pb, for various processes as a function of C.M. 
energy in electron-positron annihilations. WWZ and ZZZ have quartic gauge boson contributions and cross section 
of ~ 100 fb and 1 fb respectively. The shaded region has already been explored by the LEP experiments. 

 Meanwhile, there is data from the final data-taking period at the LEP machine on the 

cross section for the production of the γ−+WW  final state as a function of C.M. energy. The 

expected cross section of ~ 0.3 pb compared to 20 pb for WW is indicated in Fig. 1.6.  The fact 

that the data shown in Fig. 1.7 is in agreement with the Standard Model prediction indicates that 

this specific quartic gauge boson coupling appears to exist and have the predicted strength. That 

fact gives added support to the prediction that the weak gauge bosons are themselves carriers of 

weak charge.  
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Figure 1.7: Cross section at LEP [ref 3, with permission] for the production of the WWγ final state as a function of 
C.M. energy. 

1.5 The Higgs Mechanism for Bosons and Fermions 

We now turn to the Higgs boson as the last undiscovered SM particle. First we need to 

further discuss the weak interactions. They were parameterized by Fermi in the 1930’s as an 

effective 4 fermion interaction with a universal coupling, G ~ 10-5 GeV-2. The parameter G is not 

dimensionless, so we expect that it is not a fundamental quantity. The muon decay width Γµ is, 

by dimensional argument (G defined so that the decay rate is proportional to G2, [G2] = 1/M4, [Γ] 

= M) proportional to the fifth power of the muon mass,  Γµ  ~ G2mµ
5, which yields an estimate for 

the decay width Γ of 1/(6.6 x 10-10 sec) or 0.66 nsec for the lifetime, τ. The decay width has units 

of mass, while the lifetime has units of time or inverse mass, MM /1][,][ ==Γ τ . Since a strong 

process lifetime could be estimated to be, )/(~/~ µατ ms�� Γ  ~ 10-22 sec, the decays are indeed 

slow with respect to strong interaction rates.  

The Fermi four fermion effective theory is not renormalizable. A first attempt at 

modification is to replace the four fermion “contact” interaction with a “propagator” which 

spreads the interaction out in space-time and thus makes the interaction less singular. This is 

shown schematically in Fig. 1.8.  We need to assign a large mass to the weak W boson in order 

to ensure that the interaction is weak at low energies. Effectively, then ./ 22
WW MgG →  The 

fundamental strength of the weak interactions, gW then becomes comparable to the 

electromagnetic coupling e. Assuming 303.0~ =egW , we then find that GeVG 296/1 = or 

~ / 89.7W WM g G GeV= .  
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Figure 1.8: Schematic representation of the decomposition of the effective Fermi coupling constant G into a 
dimensionless coupling gW and a propagator for a vector boson of mass MW. 

This improves things but does not solve them. The weakness of the weak interactions at 

low energies requires that the W and Z acquire masses ~ 100 GeV. However, we also need the 

theory to be a renormalizable one. That requires the application of the weak gauge theory 

described in Appendix A with mass given to the W and Z bosons.  

It turns out that simply adding a term to the fundamental Lagrangian with an explicit W 

mass term destroys the renormalizability of the theory. Therefore, it is necessary, in the simplest 

case, to hypothesize the existence of a fundamental scalar field which has an interaction potential 

V(φ) shown in Eq.1.9. The interactions represented by this potential induce the masses of the 

vector gauge bosons. The potential represents the self-coupling of the Higgs bosons and contains 

two arbitrary parameters. The parameter λ  is dimensionless (see Appendix A), while the 

parameter µ  has the dimension of mass. 

 422 ||||)( φλφµφ +=V  1.8 

The minimum of the Lagrangian, / 0V φ∂ ∂ = , which we identify as the vacuum state, 

occurs not at zero field but at a non-zero “vacuum expectation value”, <φ >. 

 λµφ 2/22 −=><  1.9 

In most other cases in physics the vacuum is a state with zero average field. However, a 

classical situation with similar phenomenology occurs in superconductivity, which may be 

familiar to the reader. The free massless photon acquires a mass inside a superconductor and thus 

the electromagnetic field is excluded from a superconductor (recall the exponential suppression 

of the potential for a massive boson) except for a small “skin depth” near the surface in the 

Landau-Ginzburg theory of superconductivity. We will see, by analogy, that it is the interaction 

of this vacuum Higgs field with all other fermions and bosons that endows them with a mass. A 

plot of Eq.1.8 for a particular choice of µ and λ is shown in Fig. 1.9. 

22 / WW Mg
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Figure 1.9: Plot of the Higgs potential for a particular choice of the two parameters that define the Higgs 
interactions. 

The alert reader will note that the Lagrangian density, *~ ( ) ( )Vφ φ φ∂ ∂ +� , does not vanish 

in the vacuum state. There is a “cosmological term”, 4~)( ><>< φλφV  which we will discuss 

in Chapter 6. This term implies that the vacuum state possesses an energy density due to the 

Higgs vacuum expectation value of its field. 

Recall that the covariant derivative contains the fields W and Z. Suppose an additional field 

φ exists and has a vacuum expectation value.  The quartic couplings we described already for the 

vector gauge bosons then give mass to the W and Z. This is called “spontaneous electroweak 

symmetry breaking” because the masses are not explicitly assigned initially but appear 

spontaneously by way of interaction with the Higgs vacuum field. The gauge replacement for the 

kinetic energy of the hypothesized scalar field leads to a weak boson mass >< φWg~ , since the 

W mass term in the Lagrange density is  2~ W WM ϕ ϕ , where Wϕ  is the vector gauge field of the 

W boson. 

                                                   * 2 2( ) ( ) ~ [ ]W W WD D gφ φ φ ϕ ϕ< >  1.10 

The weak gauge bosons, W+ Zo W-, acquire a mass by interacting with the "vacuum 

expectation value" of the Higgs boson field, while the photon, γ , remains massless. The coupling 

gW can be connected to G by noting that the 4 fermion interaction can be related to the effective 

propagator, G ~ gW
2/MW

2, gW = esinθW. Thus, from G, e and sin(θW) we can predict MW. The 

Weinberg angle in turn can be determined from neutral current weak neutrino interactions (see 

Appendix A). The resulting prediction, MW ~ 80 GeV was confirmed in the early 1980’s at 

V(φ) 

φ 
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CERN in the proton - antiproton collider experiments, UA1 and UA2. The vacuum Higgs field 

thus has the experimentally determined value, <φ> ~ 174 GeV. 

                                           WWZWW MMgM θφ cos/,2/ =><=  1.11 

The ratio of the W and Z masses is predicted, WWZ MM θcos/=  (see Appendix A). This 

prediction of the SM has also been experimentally established to high precision. 

The W and Z masses are fixed by the Higgs mechanism and specify one of the two 

parameters of the Higgs potential. Let us turn now to fermions. The masses of the leptons and 

quarks range over 5 orders of magnitude from the electron, 0.5 MeV to the top quark, 175 GeV 

(see Fig.1.1). In the interest of simplicity, we again use the vacuum expectation value of the 

Higgs field to create the mass. A fermion mass can be induced using the Yukawa couplings of 

fermion pairs to the Higgs boson. These couplings are not specified by the gauge symmetry; they 

are simply put in by hand.  This is convenient and compact, but does not lead to new predictions.  

The Yukawa coupling, gf, of the Higgs field to the fermions is postulated to be, 

][~ φψψfg� . A vacuum expectation value for the Higgs field, ],[][~ ψψψψφ ff mg =><�  

then induces a mass term, mf . (see Appendix A). The coupling of the Higgs to light quarks is 

rather weak with respect to coupling to W – in the ratio mf/MW. 

 
2/)/(

]/2[

WfWf

WWfff

Mmgg

gMggm

=

=><= φ
 1.12 

We have not gained anything in predictive power, but the Higgs field can generate the 

masses of all the fermions just as it does for the gauge bosons. The difference is that there is no 

prediction for fermions. For each mass we have exchanged our ignorance of a mass for an 

unknown coupling constant, gf. However, there is still the prediction that the Higgs boson 

couples to fermions with strength proportional to the mass of that fermion. Confirmation of that 

SM prediction is very important and will be looked for in future. 

1.6  Higgs Interactions and Decays 

In the previous section we saw how the vacuum expectation value of the Higgs field could 

give a mass to all the particles in the SM. The excitations, Hφ , of the Higgs field, ~ Hφ φ φ< > + , 

imply the existence of field quanta just as the excitations of the electromagnetic field are 

identified as the photon. The couplings of the Higgs excitation to the bosons and fermions are 

indicated schematically in Fig. 1.10. 



 

  26 
  

 

H 
gW 

f, W, Z 
 
f, W, Z 

 
Figure 1.10: Schematic representation of the interactions of the Higgs boson with both fermions and bosons in the 
trilinear case. 

There are interactions of the H particle both with gauge bosons and self-interactions, as was 

the case when we looked at the vector gauge couplings. Looking at the kinetic energy term for 

the Higgs field, φφ ∂∂ *)(~�  and making the gauge replacement of the derivatives, igϕ∂ − , there 

are triple and quartic couplings of the Higgs quanta to the electroweak gauge bosons.  Therefore 

we expect, ,W W H W W H Hϕ ϕ φ ϕ ϕ φ φ  couplings in analogy to Eq.1.8. The gluons and photons do not 

carry flavor. Hence they are “flavorblind”, and do not couple directly to the Higgs. 

We will defer any discussion of Higgs self-interactions that are specified in Eq.1.8. Suffice 

it to say that, as gauge couplings, they are specified by the gauge principle, just as those of the W 

and Z are. Therefore, they are a clear prediction of the SM and should be experimentally 

challenged. 

The triple coupling is to the mass of the W and Z bosons, 	  ~ gW
2 <φ>[ W W Hϕ ϕ φ ] ~ gWMW 

[ W W Hϕ ϕ φ ].  The existence of this interaction means that the Higgs scalar, if it is energetically 

possible, preferentially decays into W and Z pairs since those couplings are much stronger than 

the couplings to the fermions.  

The decay width into W pairs is shown below. Τhe rate depends on the weak fine structure 

constant and on β, where β is the L = 0 ( L is the WW angular momentum) threshold factor = √1 

– (2 MW/MH)2 which is the velocity of the W in the Higgs C.M. with respect to c. The centrifugal 

suppression factor β2L+1 is due to the fact that larger angular momentum means larger centrifugal 

force, pushing the Ws away from the Higgs and reducing the decay probability. This factor is 

familiar from the study of the central force problem in quantum mechanics, for example the 

hydrogen atom. 

 

Thus the partial decay width depends strongly on the Higgs mass, as the third power. 

                                         Γ(H → WW)/MH ~ (αW/16)(MH/MW)2β 1.13 

Unfortunately, there were two parameters defining the Higgs potential, Eq.1.8, and we have 

fixed only one by experimentally finding the vacuum expectation value of the field (see 

gf=gW(mf/√√√√2MW) 
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Appendix A, 22 /1~/~ >< φα WW MG ). Thus the Higgs mass is an unknown parameter of the 

SM, which must be determined experimentally. Using the Higgs potential, V(φ), and expanding 

about the minimum at φ φ=< >  , we find that the mass is, .2462 λλφ GeVM H =><=  

Since the remaining parameter is an arbitrary dimensionless coupling λ, there is no prediction for 

the Higgs mass in the SM.  

A rough upper limit for the mass can be inferred when the Higgs excitation ceases to be a 

recognizable resonant state, which is when the weak interactions become strong. 

                                     Γ(H → WW)/MH ~ 1 if MH ~ MW (4/√αW) ~ 1.7 TeV 1.14 

We move now to the coupling of the Higgs to fermions, which is defined by the Yukawa 

coupling with a fermion coupling constant, gf. Therefore the Higgs couples to fermions 

proportional to their mass, Eq.1.12. The very low mass, ~ 4 MeV, of the u and d quarks which 

make up the proton which is the particle we will collide with itself or its’ antiparticle, means that 

the Higgs boson couples very weakly to ordinary matter. The coupling is gu ~ 0.000023, very 

weak compared to e = 0.303, gW = 0.65 and gs = 1.12. Gluons are not directly coupled either. 

This weak coupling makes discovering and measuring the properties of the Higgs scalar a great 

experimental challenge. In contrast, the heaviest quark, the top, is strongly coupled, gt ~ gw 

(mt/MW)/√2 ~ 0.99.  

The Higgs decay width into quarks is shown in Eq.1.15. For leptons the same result holds 

save that the color factor of three should be omitted as we no longer sum over all final state 

colors. The decay is into a fermion – anti-fermion pair which has the quantum numbers, P = 

parity, L = orbital angular momentum, S = spin angular momentum and J = total angular 

momentum. The pair has charge conjugation C and parity P ; C = (-1)L+S , P = (-1)L+1. The Higgs 

is a scalar, JPC = 0++, so that the pair must have L = 1, because the intrinsic parity of a quark and 

an anti-quark are opposite. The threshold factor mentioned above is, for L = 1, β3. 

                                                   2 3( ) / ~ (3 /8)( / )H W f WH qq M m Mα βΓ →   


































































 1.15 

 

The total Higgs decay width as a function of Higgs mass is given in Fig. 1.11. Note the M3 

behavior at high masses, as expected due to the dominance of the WW and ZZ decay modes. At 

low masses, a linear dependence on Higgs mass of the decay width into quarks is expected, from 

Eq.1.15 and is seen as a steep drop in width with decreasing Higgs mass. The experimental mass 

resolution expected in LHC experiments (Chapter 5) is much larger than the intrinsic width of 

the Higgs at low mass. Thus, the total width is dominated by the experimental mass resolution 

1.14 
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and the intrinsic width will be unobservable. Clearly, if the Higgs is a relatively low mass object, 

optimizing the detector resolution will be of critical importance. 

 
Figure 1.11: Higgs decay width as a function of mass summed over all fermion and boson final states.  

The ZZ and WW widths can be computed in COMPHEP and compared to Fig. 1.11. The 

student is encouraged to see if the results can be duplicated. The COMPHEP program also 

allows us to evaluate the “off shell” decays of a Higgs into *ZZ Z + −= � � which can occur at a 

mass below 2 ZM because of the spread in mass of the Z resonance characterized by the Breit-

Wigner width (see Appendix A). 

The ZZ and WW widths from COMPHEP are included in Fig. 1.11. Note the threshold 

behavior at Higgs mass equal twice the W mass and the ultimate, high mass cubic dependence on 

the mass. Note also that a 1 TeV mass Higgs has a ~ 0.3 TeV decay width into ZZ + WW pairs, 

so that the width to mass ratio is already 30%. The Higgs branching ratio into top pairs is smaller 

than that into W or Z pairs, and is ignored in this estimate. 

 We will return to the subject of finding the Higgs in Chapter 5 after we arm ourselves with 

the tools we need in the next three Chapters. 
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1.7  Questions Unanswered by the SM 

We have tried in this first Chapter to give an overview of our accumulated wisdom in high 

energy physics obtained over the last 40 years or more. The treatment has been brief and the 

mathematics has been simplified. Nevertheless, we hope that the basic insights of the Standard 

Model have been presented and partially explained. We also assume that the student has by now 

acquired some facility with the COMPHEP program and will reproduce the examples given in 

the text as the exposition unfolds. 

There are many arbitrary parameters contained in the Standard Model. For example, the 

three fine structure constants, Ws ααα ,, , the six masses of the quarks, and the three masses of the 

leptons (six if neutrinos are allowed to have small masses).  Many of these parameters have to do 

with the replication of the pattern in the Standard Model into three generations. We do not yet 

understand why they take the values we measure experimentally. 

We list below some of the unresolved fundamental questions that are not answered in the 

context of the SM. It would be the height of presumption to imagine that we can do more than 

explain the experimental program, which is now being mounted to explore the second question, 

to which we devote Chapters 2-5 of this text. We will, however, very briefly return to these 

questions in Chapter 6. Our aim here is to bring these questions forward to the student so that she 

is aware that the SM, although a wonderful edifice which explains all our present experimental 

data, appears to be incomplete and therefore unsatisfying. Clearly, there remains a lot of work for 

the next generation of high energy physicists to do! 
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Questions 
1. How do the Z and W acquire mass and not the photon? (Chapter 1) 

2. What is MH and how do we measure it? (Chapters 4,5) 

3. Why are there 3 and only 3 light “generations”? (Chapter 6) 

4. What explains the pattern of quark and lepton masses and mixing? 

5. Why are the known mass scales so different? ΛQCD ~ 0.2 GeV (strong interaction field) 

             << <φ > ~ 174 GeV (electroweak scale)   

<<MGUT ~ 1016 GeV (Grand Unified scale) 

<<MPL ~ 1019 GeV (Planck mass scale where gravity becomes strong) 

6. Why is charge quantized? 

7. Why do neutrinos have such small masses? 

8. Why is matter (protons) ~ stable? 

9. Why is the Universe made wholly of matter? (CP violation) 

10. What is “dark matter” made of? There is no plausible SM candidate particle. What is 
“dark energy”? 

11. Why is the cosmological constant so small? The vacuum Higgs field leads to a constant 
which is 1055 times the closure density of the Universe. 

12. How does gravity fit in with the strong, electromagnetic and weak forces? 
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Exercises 
1.  Download the COMPHEP code and read the Users Manual. 

2.    Read the worked example in Appendix B. Find the cross section for electron – positron     
production of W pairs at 200 GeV and compare it to the result quoted in the text, Fig. 1.4. 

3.      Download the .pdf reader from the Adobe site quoted in the introduction. 

4.      Use your web browser to find the Fermilab publications site, http://fnalpubs.fnal.gov . Then 
click on preprints and search. Look for author ”Montgomery” and find “The Physics of 
Jets”.  Download the paper as a .pdf file. Then go to the site, 
http://fnalpubs.fnal.gov/archive/1998/conf/Conf-980398.pdf . Compare to reference 7 
quoted in Chapter 2,  H. Montgomery, Fermilab –Conf-98-398 (1998). 

 
5.  Evaluate the Fourier transform of the Yukawa potential and verify that it has the form of a 

“propagator” with mass as indicated in Eq.1.6 

6.  Use COMPHEP to find the cross section for electron – positron production of ZWW and 
compare the result, at 1 TeV C.M. energy to that shown in Fig.1.6. 

7.  Find the minimum of the Higgs potential, Eq.1.10 to confirm Eq.1.11. 

8.  Evaluate the Higgs width into W pairs for a 1 TeV Higgs boson. 

9.  Evaluate the Higgs width into b quark pairs for a 120 GeV Higgs boson. 

10.  Use COMPHEP to evaluate the widths given in Exercises 8 and 9 and compare the results. 

11.  If the proton had a lifetime of 1031 years, how many decays would occur in your body in a 
1-year period? 

12.    If the neutrino to proton ratio in the Universe is ~ 109 and if the mass density of the    

Universe is ~ 1 p/m3, estimate the neutrino mass needed if they are to be responsible for the 
entire mass density. 

13. Use COMPHEP to look at electron – positron production of H + Z. Check the Feynman 
diagrams. For Higgs mass of 130 GeV find the cross section at C.M. energy of 250 GeV. 
What is the cross section for H + H + Z at energy of 500 GeV? Look at the Feynman 
diagram to confirm that triple H and quartic H couplings contribute to this latter process. 

14.  Look at the COMPHEP model parameters for quark and lepton masses and compare to 
the Figure given in this Chapter 

15. Use COMPHEP in the SM and compare the list of particles to that given in the 
corresponding Figure in this Chapter. 

16.     Find the W and Z decay width and branching fractions in COMPHEP, W -> 2*x, Z ->           
2*x. Compare to the data shown in Chapter 4. 
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17. Use COMPHEP to look at electron-positron W pair production. How many Feynman 
diagrams are there? Turn all but 1 off and evaluate each in turn. Which is largest? What is 
the full cross section? Are there destructive interferences? Look at the energy dependence 
of each diagram too. In particular show that with only the neutrino exchange diagram 
active the cross section at C.M. energy of 200 GeV is ~ 43 pb. 

18. Use COMPHEP to find the cross section at 1 TeV C.M. energy for electron-positron 
production of WWZ. Check the Feynman diagrams to see that this process probes quartic 
gauge boson self-couplings. 

19. Use COMPHEP to explore the vertices in the Lagrangian of the SM and compare to the 
results quoted in this Chapter and “derived” in Appendix A. 
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2.     Detector Basics 
 

 “Facts are stubborn things; and whatever may be our wishes, our inclinations, or the dictates of 

our passions, they cannot alter the state of facts and evidence.”  - John Adams 

 

“When you can measure what you are speaking about, and express it in numbers, you know 

something about it.” William Thomson 

2.1  SM Particles - Mapping into Detector Subsystems 

Chapter 1 served to define the particle content and interactions of the Standard Model 

(SM). The discussion of the Higgs boson width in Chapter 1 also showed that detector resolution 

would determine the sensitivity of searches for low mass Higgs particles. Our plan is to discuss 

in this chapter how the fundamental particles of the SM are detected and their kinematic 

properties measured.  Specifically we want to discuss the accuracy that we can expect to achieve 

in measuring the vector position and momentum of each SM particle that is produced in a 

collision.  

We also wish to do “particle identification”, that is to identify a produced particle 

unambiguously as a unique element of the “periodic table” of the SM, which was shown in 

Figure 1.2. We will use that information in the later chapters because it will inform on the 

optimal search strategies for new particles. 

The discussion of detection principles that is given here will be very schematic. Several 

references are given at the end of this chapter, which supply many details of potential interest to 

the student. We assume that the reader is familiar with magnetic fields, ionization energy deposit 

in materials, and the electromagnetic interactions of charged particles.  

 A schematic view of a typical general purpose detector used in high energy physics 

experiments is shown in Figure 2.1. The detector itself is logically broken into distinct 

subsystems. A solenoid electro-magnet coil produces a large volume of axial magnetic field, in 

this example of strength 4T (1 T = 1 Tesla = 10000 Gauss).  The purpose of this magnetic field is 

to bend all of the charged particles, which are emitted, from the production point, or production 

vertex, by an amount that depends on the momentum and sign of the charge of the produced 

particles.  A measurement of the trajectories of the charged particles then results in the 

determination of their position and momentum vectors. The ionization energy loss in the tracking 

detector elements is small.  Therefore, this detection device is not “destructive” of the properties 
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of the particle. In turn, that means we can make subsequent redundant measurements of, say, the 

particle energy as it escapes from the production vertex. 

 
 

Figure 2.1: A general purpose detector used in proton – (anti)proton collider experiments.  The subsystems used are: 
a tracking system, a hermetic calorimeter system which is subdivided into an electromagnetic (ECAL) and a 
hadronic (HCAL) section, a large solenoid magnet coil to provide a large volume filled with magnetic field, and the 
iron needed to supply the magnetic flux return for the magnet. The flux return is itself instrumented with chambers 
to measure the trajectories of the muons [ref. 1 – CMS, with permission]. 

Working our way out from the interaction point at increasing distances we exit the tracker 

and next encounter electromagnetic calorimetry followed by hadronic calorimetry. The purpose 

of the calorimetric detectors is to measure the energy of both the charged and neutral particles, 

which are incident upon it. These detector systems extend down to angles of about 0.8 degree to 

the incident beam directions. They are the two main longitudinally, or depth segmented, 

“compartments” of the calorimetry.  

The electromagnetic calorimeter initiates the interaction of photons and electrons. Recall 

that these fundamental particles have only electromagnetic and weak interactions.  The hadronic 

calorimeter elements initiate the interactions of all the strongly interacting particles, such as 

quarks and gluons, or, more accurately, their “decay” products. By totally absorbing the energy 

of the incident particles and by sampling that absorbed energy, the calorimetry makes a 

measurement of the energy of almost all the produced particles. 
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Finally, the muons, which have only electromagnetic and weak interactions, are detected 

and identified in tracking chambers embedded in the magnetic return yoke of the magnet.  The 

muons have the same interactions as electrons (“who ordered that?”), but they are about 200 

times heavier.  Therefore, they do not radiate significantly at the energies considered here and 

only lose energy by ionization. When all other particles have been absorbed what remains are the 

muons. 

  Comparing the initial energy transverse to the proton and (anti) proton beams (ET is 

approximately zero) and the detected transverse energy of all particles in the final state, we can 

look for a mismatch.  Any missing energy implies either a mis-measurement, incomplete 

detector coverage, or that neutrinos, which interact only weakly, were produced and escaped 

detection. We consider only transverse energy imbalance because energy can escape undetected 

near to the vacuum pipe containing the beams, which means that the final state total longitudinal 

energy is poorly measured. 

The accuracy of the measurement of the momentum, P, or energy, E, of single particles is 

defined by the resolution of the tracking detectors in the magnetic field or the calorimetric 

energy resolution.  In both cases the resolution is represented by expressions containing two 

terms for the fractional error, which are “folded in quadrature” (that means 22 baba +=⊕ ). 

The resolution for tracking, dP/P, has a term that increases with momentum, while the resolution 

for calorimetry, dE/E, has a term, which decreases with energy. If the b and d factors can be 

ignored, this different behavior of the energy resolution makes calorimetry the detector of choice 

at very high energies.  
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The tracking resolution has a term due to the finite accuracy of the measurements of the 

deflection angle of the particle in the magnetic field, c, and a term due to multiple scattering, d.  

The calorimetric terms are due to stochastic fluctuations in the sampled energy, a, and non-

uniformity of the medium, b. Examples will be given later in this Chapter in order to set the 

numerical scale. 

In Chapter 1 we provided a table (Figure 1.2), which defined all the fundamental particles 

of the Standard Model except the Higgs boson. For purposes of detection, we will now separate 

them into strongly interacting particles, electromagnetically interacting particles and weakly 

interacting particles.  
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The strongly interacting particles are gluons (g) and quarks (u, c, t, d, s, b). The particles 

with electromagnetic interactions are photons and charged leptons (γ, e, µ, τ). The weakly 

interacting particles are the EW gauge bosons, W and Z and the neutrinos. νe, νµ,  ντ. Strictly 

speaking the neutrinos are not directly detected. Their presence in the final state is inferred from 

the existence of “missing” transverse energy, which means that the sum of all transverse energy 

in the final state is substantially different from zero. 

This separation, which is made according to the strongest force felt by the SM particle, is 

the first part of particle identification.  

 
Table 2.1 

Fundamental elementary particles in the Standard Model, their detection 
 in particular detector subsystems and a signature allowing for particle identification 

 in those subsystems. 
 

PARTICLE SIGNATURE  DETECTOR 

u, c, t → Wb 

d, s, b 

g 

Jet of Hadrons 

)( oλ  

Calorimeter 

e, γ   Electromagnetic 

Shower, (Xo ) 

Calorimeter 

(ECAL) 

τµ ννν ,,e  “Missing” 

Transverse 

Energy 

Calorimeter 

µ,τ → µνν 

Z → µµ  

Only Ionization 

Interactions, 

dE/dx 

Muon Absorber 

c, b,τ  Decay with 

mc µτ 100≥  

Silicon Tracking 

 

Basically, the calorimetry does a large part of the energy measurement of all the particles 

as seen in Table 2.1. The electromagnetic compartment of the calorimetry gives us electron and 

photon energies and positions (specified by independently recorded polar and azimuthal angular 

“pixels”), while the hadronic compartment gives us the position and energy of the quarks and 

gluons. The particle identification allowing us to separate hadrons and electrons is achieved 
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because of the large difference in mean free path for electromagnetic interaction, the radiation 

length Xo, and that for hadronic interaction, oλ .  For lead, the ratio is about 1:30.  

Any missing transverse energy, defined to be the transverse energy difference between the 

initial and final state, is inferred from the calorimetric energy measurements. Its’ existence 

indicates the emission of neutrinos or other non-interacting particles in the collision.  

The muons are uniquely identified as those charged particles, which have only ionization 

interactions and thus penetrate deeply into the steel return yoke. The detectors in the yoke serve 

the purpose of doing muon particle identification. 

The last row in Table 2.1 requires further explanation. Silicon detectors can now easily be 

constructed with a separation between detection elements, or “pitch”, of about 50 µm.  

Therefore, particles which are produced at the primary interaction vertex and subsequently 

weakly decay at a secondary vertex point can be detected and identified if the distance between 

the primary and the secondary vertices exceeds about 10-100µm.  SM particles of this type 

include the c quark, the b quark, and the tau lepton. 

Let us estimate the decay width of a c quark to an s quark in the specific reaction, 

ec s e ν+→ + + . This is a decay within a generation, so we expect that the mixing matrix element 

is ~ 1. The decay can be visualized as first the emission of a virtual W, Q � q + W, which then 

virtually decays into a l + ν. The two distinct vertices mean that the Feynman amplitude is 

proportional to the weak fine structure constant, while the decay width is proportional to the 

square. The virtual W propagator leads to 4/1 WM  behavior. Thus, by dimensional argument we 

expect scaling as the fifth power of the parent mass. This argument is only used to give us a 

rough order of magnitude for the decay width. 
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Taking the charm quark’s mass to be equal to 1.5 GeV (Fig. 1.1), we can very roughly 

estimate the charmed quark lifetime τ, and decay width Γ. The proper decay distance, cτ, is 

estimated to be ~ 1.0 µm.  
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Therefore, we now understand why only the charm quark, the b quark, and the tau lepton 

appear in the last row of Table 2.1.  The heavy quarks and leptons can be identified by resolvable 

decay vertices made available in a tracking volume extending over distances ~ 1m. The decays 
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shown in Table 2.1 for the top quark, the W and the Z happen very rapidly with unresolved 

production and decay vertices. 

The lighter unstable quarks and leptons (e.g. s quarks, muons) can be considered to be 

quasi-stable in that they have typical decay distances which are larger then the detectors 

themselves. For example, the muon is unstable but has a 2.2 µsec (660 m)  lifetime, so that it is 

very unlikely to decay before it exits the “generic’ detector shown in Fig. 2.1. Therefore, we 

have SM particles that decay almost immediately, that decay within the tracker, and that decay 

outside the detector. 

Particle identification at a more incisive level can often be accomplished by combining the 

information available from different subsystems of a general purpose detector. The principal is 

illustrated in Table 2.2. For example electrons and photons both give energy deposits localized in 

the electromagnetic calorimeter. However, the charged electron has an associated track in the 

tracking subsystems while the neutral photon does not ionize and leaves no track. Combining 

tracking and calorimetry therefore allows us to distinguish between electrons and photons. 

Muons, quark and gluon jets, and neutrinos all have unique signatures in a general purpose 

detector as seen in Table 2.2. Heavy quarks and leptons, b, c and τ have, in addition, 

distinguishable secondary decay vertices. 

Table 2.2 
Particle identification in a general purpose detector. 

Particle
type

Tracking ECAL HCAL Muon

γγγγ

e

µµµµ

Jet

Et
miss

 
Combining the information from the detector subsystems is not only useful in particle 

identification but also in forming “triggers”. Triggering, or pre-selecting events of interest prior 

to storing them on some permanent medium such as magnetic tape, is of primary importance in 

data taking at proton - (anti) proton colliders. The volume of data generated by a contemporary 
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detector is enormous. There are millions of independent electronic channels recording data about 

an interaction and there are a billion interactions per second.  Clearly, only a miniscule fraction 

of this information can be stored permanently. The rest must be discarded for all time. Given that 

perhaps only 100 interactions per second can be stored for later study, we must quickly pick out 

one interaction in every 10 million. Therefore we must be extremely careful and very sure that 

we choose the desired needle in the enormous haystack. Even so the remaining volume of saved 

data is very large.  

2.2 Tracking and  “b Tags” 

We now look in a bit more detail at the main detector subsystems. The tracking detectors 

may consist conceptually of a series of concentric cylinders for a typical collider detector. This 

geometry is often chosen with solenoid magnet coils that create axial magnetic fields, because 

then the particle trajectories are circles in the azimuthal or (r,φ) plane. At the very high 

luminosities which will be required to search for the Higgs particle, detectors with the best 

possible rate capability will be needed. An example of such a detector, consisting of silicon 

pixels followed by silicon strips, is shown in Figure 2.2. As we can see from the figure, the 

detectors are in fact built up by approximating a cylinder using small planar detectors oriented 

appropriately. 

 
Figure 2.2:  A photo of the mechanical prototype of a tracking system constructed entirely of planer silicon 
detectors.  Concentric cylinders of detecting elements are built up out of identical rectangular sub – assemblies 
[CMS photo, with permission]. 

A major issue for the tracking detector subsystem is the efficient detection of the ionization 

energy left by charged particles, with a good signal to noise ratio so that spurious signals due to 



 

  41 
  

noise pulses are rejected. Spatial accuracy is obviously of the highest importance. Also important 

is the relative alignment of all of the planar elements making up the complete detector. A 

sufficient number of measurements of the position of the trajectory of the particle at different 

radii is needed to “pattern recognize” the helical path taken by a particle in the magnetic field 

and then “reconstruct” the track in space. The result of the tracker measurements is ideally a 

fully efficient determination of the vector position and momentum of all the charged particles 

emitted in the interaction but with no spurious tracks “found”.  

For each track we are measuring the bend angle, α , which is the angle the momentum 

vector is rotated by, or “bent”, in the magnetic field. The sense of the rotation tells us the sign of 

the charge of the particle. This angle is inversely proportional to the particle momentum, 

P/1~α . Thus, the fractional momentum error has a term due to angular error dα which is 

proportional to the momentum (see Eq.2.1). 
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The additional term, which is folded in quadrature in Eq.2.1, is due to multiple scattering, 

which is only important at low momentum. Since we are mostly interested in high transverse 

momentum physics, this term will be ignored from now on. 

The bend angle increases with increasing magnetic field, α ~ B, and the error on the bend 

angle decreases with improved spatial resolution. Therefore, there are basically two distinct 

strategies that can be employed to improve the momentum measurement made by a tracking 

detector. Increase the field or improve the spatial resolution. At the present time a 4 T field and a 

spatial resolution of a few µm, as afforded by silicon detectors, is at the technological limit. 

These precision tracking detectors operated in high fields have good momentum resolution. 

Typically a 100 GeV particle will have its momentum measured at the one percent level. 

Another important task performed by a tracking subsystem is the identification and 

measurement of secondary vertices. As we saw in Chapter 1, the Higgs is constructed to couple 

to mass. Therefore, detection of heavy quark and lepton decays is an important ingredient in 

Higgs searches. These heavy objects are unstable and decay weakly into lighter quarks and 

leptons respectively. 

The lifetime in the particle rest frame, in distance units, of the charm quark, the b quark, 

and the tau lepton is;  

2.4 
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The quoted range of lifetimes for c and b quarks has to do with the fact that the decays of 

quark – antiquark bound states with large binding energy corrections due to the strong force are, 

in fact, what are measured and not the “bare” heavy quark decays. Recall that an isolated colored 

quark cannot exist, so that it is the colorless bound states of quarks, which are measured. The 

lifetime spread decreases for the b quark since it is ~ three times heavier than the c quark and 

higher mass means weaker strong interaction corrections. 

We saw in Chapter 1 that the weak interaction was responsible for the decay of the second 

and third generation quarks and leptons. The decay width for typical decay modes as a function 

of the available center of mass (C.M.) energy is given in Figure 2.3 as is the spin correlation 

induced by the V-A nature of the weak interaction (see Chapter 4, 5). The thick arrow indicates 

spin direction here while the thin arrow shows the momentum direction. We simply assert that 

particles have negative helicity, or spin anti-parallel to momentum, while anti-particles have 

positive helicity. The “generic” decay is of a heavy quark Q to a light quark q, lepton and anti-

neutrino, Q q ν−→ + + �� . 

Entries to Fig.2.2 include the transitions between up and down quarks in free neutron beta 

decay and in charged pion decay. Other entries are the transitions between strange and up quarks, 

charm and strange quarks, and bottom and charm quarks. Where relevant, the legend in Figure 

2.2 shows the approximate square of the mixing matrix element for the particular quark decay, 
2
qqV ′ , in terms of powers of the Cabibbo angle θc (see Chapter 6). The line given in the figure 

represents the fact that the decay width is closely proportional to the fifth power of the available 

energy over about fifteen orders of magnitude in the decay width. 
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Figure 2.2: a. The weak interaction decay width as a function of the available center of mass energy.  The up and 
down quarks, the strange quark, the charm quark, and the b quark follow a single curve (the fifth power of m), as do 
the muon and the tau leptons. The strange and b quark decay widths are adjusted by the square of the quark mixing 
matrix elements (see Chapter 6).  b. Helicity structure of ( 1/ 3) (2 / 3)Q q ν−− → + + ��  decays induced by the 
V-A weak interactions that make particles left handed (negative helicity) and anti-particles right handed (positive 
helicity). The direction of the momentum is indicated by the arrow, the spin direction by the thick arrow. 

In the rest frame of an unstable particle, where the proper time is labeled as t′ , there is a 

characteristic lifetime τ, as seen in Eq.2.6.  The time observed by the laboratory clocks is t, and 

N(t) is the number of particles that survive at time t. 
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We use the relationships found in special relativity that the energy E and the rest mass m 

are related by, mE γ= , where 21/ 1γ β= − . The momentum P and energy E are related to the 

velocity, v, with respect to c, .// EPcv ==β (see Appendix C).  The total distance traveled 

before decay is R, so that R = vt.  In the detector frame, the measured time t is dilated. Therefore, 

in the detection of heavy quarks and leptons with mean decay distances of, <ct> = cτγ , since 

1γ >  silicon detectors with a strip pitch of  ~ 50 µm or smaller are sufficient.  

a) 

b) 

ν

−



�
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In Figure 2.4 we see an example from the CDF detector operating at the Fermilab 

accelerator complex. Note the ability of a tracking detector using silicon to resolve secondary 

vertices. At a distance scale of 1 mm or 1000 µm, the separation between the primary production 

vertex and the secondary decay vertices of the heavy quarks is very evident.  

The identification of heavy quarks in the final state is very important in many studies of 

collider physics processes. For example, top quarks decay almost exclusively into b + W. If we 

can identify a b quark using secondary vertex identification, (this is called “b tagging”) then we 

have taken a big step toward identifying the top quark. 

 
Figure 2.4:  An axial view of a multi- jet event in the CDF detector.  At a scale of 1 mm, the vertex from which the 
particles are emanating is resolved into a primary vertex and two secondary decay vertices [CDF - with permission]. 

2.3  EM Calorimetry - e and γγγγ 

The next detection subsystem which a particle encounters in exiting from the production 

point is the electromagnetic calorimeter.  The two basic characteristic radiative processes, which 

create an electromagnetic “shower”, are Bremsstrahlung radiation by the electrons and electron- 

positron pair production by the photons.  There is a characteristic length scale for radiative 

processes in the material of the calorimeter called the radiation length, Xo. For example, Xo is 

0.56 cm in lead. Since an electromagnetic shower is initiated and runs its course in about 20 

radiation lengths, or 11.2 cm in lead, an electromagnetic calorimeter can be quite compact. 

There is a characteristic energy, which defines the termination of the electromagnetic 

shower multiplication processes. This is the critical energy, which is the energy below which 

radiative processes largely cease and particles in the shower lose energy only by ionization or 

other non-radiative processes. At this depth in the shower, called “shower maximum”, the 
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number of particles in the shower is a maximum and all have approximately the same energy, the 

critical energy. Given the absence of further particle production, the particles in the shower then 

lose energy and eventually come to rest.  

For typical materials used in electromagnetic calorimeters, the critical energy, Ec, is 

approximately 2.5 MeV. Assuming that all particles in the shower share the energy equally, a 

one GeV electron incident on the calorimeter becomes, at the shower maximum, a shower of 400 

particles, N ~ E/Ec. The stochastic fluctuation on the number of particles in the shower, N, then 

leads to an estimate for the fractional energy error of ~ 5 %, ( NEdE /1~/ ). 

A picture of a shower developing in sequential lead plates is shown in Figure 2.5. The 

shower begins in the first two plates, reaches a maximum and then begins to die off.  

 
Figure 2.5: A photograph of the development of an electromagnetic shower in Pb plates.  The number of particles in 
the shower builds up geometrically.  After reaching a maximum the shower then slowly dies off due to ionization 
loss [ref.2 – with permission]. 

There is a characteristic transverse size of a shower, also roughly Xo. This means that 

photons and electrons can be well-localized transverse to the incident point of impact on the 

calorimeter by the calorimetric measurement. Thus, the calorimetric technique measures both 

energy and position, although the position measurement is crude compared to tracking data. 
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There are several types of calorimetric signal readout. In Figure 2.5 we saw the “sampling” 

type of calorimeter where the shower develops in passive heavy element plates and is then 

sampled in gaseous or other low atomic weight active detector layers. Another type of readout is 

shown in Figure 2.6. In this case the entire material is fully active. Typically transparent 

scintillating crystals are used which incorporate heavy elements. The light which is produced is 

then read-out by a photon transducer of some sort. In principle, this is the most precise method of 

calorimetric energy measurement because there are no inactive materials with their attendant 

fluctuating unsampled energy deposits.  

 
Figure 2.6: a. A photograph of a fully active crystal electromagnetic detector.  The emitted light from these crystals 
is detected in semiconductor elements, b., and converted to an electrical signal, which is then recorded.  This device 
is extremely accurate in its measurement of energy, c. [CMS photo - with permission]. 

As seen in Figure 2.6, at an energy of 280 GeV a fractional energy measurement of 0.4% is 

possible. Thus, electromagnetic calorimetry can have a high precision, comparable even to that 

afforded by the tracking at energies above about 100 GeV.  

In Equation 2.1 we defined the two parameters going into a calorimetric energy 

measurement. There was a “stochastic term” which is due to statistical fluctuations in the shower 

and a “constant term”, due to inhomogeneties in detector construction, which both contribute to 

the fractional energy error. For electromagnetic calorimetry, a stochastic coefficient of 2 percent, 

if the energy is expressed in GeV, and a constant term of 0.25 percent are at the present 

technological limit. 

 

 
a) 

b) 

c) 
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As we will discuss below, calorimeters are normally segmented in both polar and azimuthal 

angle. Each segment functions independently and is read-out as a distinct piece of information 

characterizing the interaction of interest. The variable used for equal spatial segmentation is not 

the polar angle but a quantity called the pseudorapidity, η. As we will see later, (Chapter 3, 

Appendix C), this variable, for light particles, is just single particle longitudinal phase space. 

Therefore, in the absence of some overall dynamics, we expect particles to be uniformly 

distributed in pseudorapidity. Since spin and polarization effects are known to be small in proton 

– (anti)proton collisions, we also expect particles to be produced uniformly in azimuth. The 

calorimeter segments are typically constructed of independent elements, or “pixels”, with 

roughly constant area in (η,φ) space, where θ is the polar angle of the particle in spherical polar 

coordinates with the beam direction along the z-axis. 

                                                           )]2/ln[tan(θη −=  2.7 

In Figure 2.7 we show the display of an event obtained in the CDF detector containing a 

single produced W gauge boson, which decays into an electron and neutrino. The horizontal axes 

of the plot are azimuthal angle and pseudorapidity and the vertical axis is transverse energy. The 

“pixels” correspond to independently read out electronic channels each giving an independent 

energy measurement.  The W gauge bosons can decay into quark-antiquark pairs, e.g. 

,W u d c s+ → + + , or into lepton pairs, e+ + νe, µ+ + νµ, τ+ + ντ.  For these 2 body decays, ET ~ 

MW/2 ~ 40 GeV for symmetric decays as is observed in Fig.2.7. 

 
Figure 2.7:  Schematic display of two events where a single W boson is produced and decays into an electron and a 
neutrino.  The  “pixels” or calorimetric segments in the plane are defined to be the azimuthal angle and the 
pseudorapidity.  The vertical axis is the transverse energy [CDF  - with permission].   

Approximately all the energy is deposited in a single segment, or “pixel”, of the 

electromagnetic calorimeter. This fact, and the existence of an associated track give us electron 

particle identification. Note also that the existence of a neutrino in the final state is inferred by 

the failure to balance transverse energy.  

Electromagnetic calorimeters may be calibrated in energy by exposing them to well-

prepared particle beams and recording the energy deposit. They may also be calibrated “in situ”. 
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In Figure 2.8 we show the calibration of an electromagnetic calorimeter using the two-photon 

decay of the neutral pion. The data comes from the D0 experiment, which operates at the 

Fermilab Tevatron collider facility, along with the CDF experiment. In Figure 2.9 we show the 

CDF calibration using the tracker for the charged pion and calorimetry for the neutral pion in 
oππρ −+−+ →  decays 

 
Figure 2.8: Distribution of the invariant mass of two photons in data taken with the D0 calorimeter.  Note the 
resonant peak at the mass of the neutral pion, m = 0.14 GeV, and the experimental width. The smooth curve arises 
when uncorrelated photons from different events are used [ref 3, D0- with permission]. 

 
Figure 2.9: Distribution of the invariant mass of two pions in data taken with the CDF calorimeter. Note the resonant 
peak at the mass of the ρ meson, M = 0.769 GeV. [ ref.4, CDF – with permission ] 
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2.4  Hadron Calorimetry - Jets of q and g and neutrino (missing ET) 

The outer longitudinal compartment of the calorimetry in a general purpose detector serves 

to detect and measure “hadrons”, or strongly interacting particles. We must be careful in 

discussing the strong interaction and to define the hadrons, because we have been imprecise so 

far. We have thus far defined the strong force to be the long range (massless gluons) interaction 

between colored quarks mediated by colored gluons. However, colored objects appear to be 

absolutely confined, e.g. no free quarks are found, so that isolated quarks and gluons do not 

exist, only the colorless combinations of quark-anti-quark or three quark bound states.  

There are residual forces between these “hadron” states which are responsible for binding 

protons (uud bound state) and neutrons (ddu bound state) together in the nucleus. That force is 

observed to be strong (it overcomes the Coulomb repulsion of the protons in the nucleus) and 

short ranged. An analogous situation exists in atomic physics. The long range electromagnetic 

force exists between electrons and protons causing neutral atoms to be formed. A residual Van 

der Waals force between these uncharged atoms is short ranged ( ~ 1/r6) and results in the 

formation of molecules, bound states of neutral atoms. Typically, we will concentrate on the 

quark and gluon interactions, as the complex hadron interactions are really “quark molecular 

chemistry” and we aim to study the fundamental interactions. However, in discussing 

calorimetry we need to refer to the hadrons themselves. 

A typical hadronic interaction is shown in Figure 2.10. Note the limited transverse 

momentum, or small emission angle, of the secondary particles. Note also the high number of 

secondary particles produced in a single interaction. The large final state multiplicity is in 

contrast to electromagnetic processes where there are only two particles per incident particle.  
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Figure 2.10: Photograph of a 200 GeV pion interaction.  [ref.5 –with permission]. 

There is a characteristic transverse momentum in inelastic hadronic collisions, which is 

about 0.4 GeV. Crudely speaking, the secondary particles that are produced are all pions and 

pions with charge plus, minus and zero are all equally produced. Pions are the lightest hadrons, 

quark – antiquark bound states ( , , ,oud uu dd duπ π π+ −= = = ). The neutral pions decay rapidly 

into two photons, which are then detected as showers in a fashion similar to that discussed above 

in the section on electromagnetic calorimetry. The charged pions decay weakly, with decay 

distances much larger than the detectors we describe here, so we consider them to be stable.  

However, the pions do continue to interact. There is a characteristic length over which a 

hadronic interaction occurs, the interaction length λo, which is the mean free path of the pion to 

suffer a strong interaction. In iron this length scale is 16.8 cm. In order to completely absorb, and 

hence measure, the energy a total path length of at least 10 interaction lengths is needed, or a 

calorimetric “depth” of ~ 1.7 m. In Figure 2.11 is shown the absorber structure for a typical 

hadronic calorimeter. The structures are clearly not as compact as electromagnetic calorimeters.  
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Figure 2.11: Photograph of the absorber of the CMS hadronic calorimeter (HCAL).  Note the slots interspersed in 
the brass absorber structure for the insertion of active detection (sampling) elements.  Note also that the total depth 
of the absorber is about 1 m [Fermilab - with permission]. 

In analogy to the critical energy in electromagnetism, there is a threshold energy, ThE , 

below which new particles cannot be produced. The “threshold” energy for a pion to produce 

another pion by way of the reaction pp ++→+ πππ  is ~ 2ThE mπ ~ 0.28 GeV. This energy is 

much larger than the electromagnetic critical energy. Therefore, the number of particles 

produced in an hadronic shower at “shower maximum”, N ~ E/ETh, will always be smaller than 

the number produced in an electromagnetic shower. Since the energy resolution of a calorimeter 

is at least partially defined by the stochastic fluctuation in the number of particles in the shower, 

we also expect that the ultimate energy resolution for hadronic calorimetry will not be as precise 

as that for electromagnetic calorimetry.  

 / ~ / ~ 1/ ~ /ThdE E dN N N E E 2.8 

For example, using Eq.2.8 to estimate the “stochastic coefficient” in Eq.2.1, we find a ~ 

53% when E is given in GeV units. That value is, as expected, much larger than the coefficient 

quoted for electromagnetic calorimetry. 

Sometimes the hadronic compartment is itself longitudinally segmented. In Figure 2.12 we 

show the energy deposit in an initial seven absorption length compartment vs. the energy deposit 

in the subsequent four absorption lengths. In some cases substantial energy is deposited in the 

rear compartment. This implies that, were the calorimeter truncated so as not to include the back 

compartment, the energy resolution would be seriously degraded by fluctuations in the 

longitudinal shower development and subsequent fluctuations in the energy loss due to leakage 

out the back of the calorimeter.  
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Figure 2.12: Scatter plot of the energy deposited in the first seven absorption lengths of the CMS hadronic 
calorimeter (x axis) vs. the deposited energy in the next four absorption lengths (y axis). The line indicates a total 
300 GeV deposited in summing both compartments. 

There is an intrinsic limit to the depth. It makes no sense to construct a device, which is 

very thick because an emitted gluon can virtually “decay”, or split into a heavy quark, Q, pair 

with a probability πα /~ s . Subsequent decays of the type, eQ q e ν−→ + +  occur with a 

branching ratio ~ 10%. Therefore, a gluon jet will “leak” ~ 1/6 of its energy due to escaping 

neutrinos roughly ~ 0.3 % of the time.  

The calorimeter shown in the photo of Figure 2.11 is of the sampling variety. Active 

detection elements are inserted in the slots that are interspersed in the absorber. An example of a 

possible active element is shown in Figure 2.13. In this case optically independent “scintillating” 

tiles are read-out by “wavelength shifting” optical fibers. This type of layout allows us to 

produce a hadronic calorimeter that has active samples covering almost all the solid angle. An 

“hermetic” construction is needed if the missing energy is to be accurately measured. Clearly, 

“dead” regions in the calorimetry are to be avoided since particles lost in them would mimic the 

emission of undetected neutrinos. 
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Figure 2.13: Photograph of a calorimeter scintillator “tile” showing the “tile” and its “wavelength shifting” fiber. 
The optical signal is converted from blue light in the “tile” to green light in the fiber and then captured and taken out 
through the small fiber [Fermilab - with permission]. 

All calorimeter detection elements must be manufactured to achieve a good uniformity. 

Otherwise, variations of the shower locations in depth or in different “pixels” will lead to 

variations in the reported energy for a monoenergetic incident particle. For example, in a 

hadronic calorimeter a variation in light output of the tiles shown in Fig. 2.13 with a standard 

deviation of 10% leads to a fractional energy error (the factor b in Eq.2.1) of about 3%. Similar, 

but much more exacting, uniformity is needed for the high precision electromagnetic 

calorimetry. 

Calorimeters are often calibrated using prepared beams at accelerators with well-defined 

momentum. In addition, we can use cosmic ray muons since they deposit a well-defined energy 

(minimum ionizing particle) in each tile. As we mentioned above, a muon traversing the 

sampling layers of a calorimeter will deposit only ionization energy.  In Figure 2.14 we show the 

output signal due to passage of a muon. This peak is well resolved from the “pedestal” peak that 

corresponds to zero energy deposit, broadened by noise in the electronics readout. Clearly, 

calorimetry can also be used in muon “particle identification”. 
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Figure 2.14: Distribution of the deposited energy in a calorimeter tile.  Note the “ pedestal “ due to zero energy 
deposit and the ionization peak due to the passage of a muon [ref 5, CMS – with permission]. 

What about the required extent of angular coverage? We know that we want to detect all 

particles that are emitted in an event, so as to infer the vector momentum of an emitted, and 

undetected, neutrino. However, technically we cannot achieve total coverage due to the 

necessary existence of vacuum pipes containing the proton – (anti) proton beams or the obstacles 

due to the magnetic focusing elements of the accelerator, for example. How small an angle do we 

need to cover?  In Figure 2.15 is shown the pseudorapidity distribution of particles that we wish 

to detect after they emit a virtual W or Z gauge boson, for example, by way of a “radiative” 

process, where a d quark bound into the initial state proton radiates a W- and turns into a u quark, 
−+→ Wud . These processes are very important in Higgs searches, so that calorimetry should 

extend to |η| ~ 5, or to a polar angle of about 0.8 degrees, at the LHC experiments.   



 

  55 
  

 
 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

 

Figure 2.15:a) Distribution in pseudorapidity of the recoil or “tag” jets produced in the WW fusion process b) 
Feynman diagram for the WW fusion process u d d u H+ → + +  

Previously, Fig.2.7, we saw the electron signal in an event where a produced W boson 

decayed into an electron and a neutrino. The calorimetry information was shown as the 

transverse energy deposited in independent (η,φ) “pixels”.  What sort of angular size is needed? 

In Figure 2.16 we see a choice with pixel widths ~η φ∆ ∆  ~ 0.087 (η is dimensionless and the 

units for φ are radians so that there are five degree pixels, or 72 segments in azimuth). This 

choice of segments implies that we can resolve a Higgs of 1 TeV mass decaying into ZZ that in 

turn decay into 4 quarks.  

A 1 TeV Higgs decays at rest into a ZZ pair, each with a momentum ~ 500 GeV. The 

subsequent decay of a Z into quark pairs, for massless quarks, has a total transverse momentum 

between the quark and anti-quark equal to the Z mass or  ~ 91 GeV for symmetric decays. The 

decay opening angle between the quarks is ~ 0.2 radians. These quarks then go into separate 

calorimetric segments of full width 0.087 and can be resolved as two distinct objects. Since there 

are theoretical upper limits on the Higgs mass of roughly 1 TeV, this choice of pixel size for 

HCAL is acceptable.  
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Figure 2.16: Schematic layout of the CMS calorimeter.  The segments or “pixels” are separated by a constant step in 
pseudorapidity and in azimuthal angle. The pseudorapidity of the pixel boundary is also given [CMS - with 
permission]. 

We have so far discussed hadrons and evaded the question of how we detect quarks and 

gluons. These latter objects have color, and color is thought to be completely confined. We assert 

that the color force is weak at small distances and strong at large distances (see Appendix D). As 

a result colored objects cannot be separated beyond a distance set by a QCD parameter which has 

a characteristic length ~ 1 fm ~ 1/QCDΛ . Therefore, the quark or gluon must shed the color by 

becoming an ensemble of colorless hadrons, for example quark – antiquark pions in colorless 

combinations like , ,RR GG BB.  

Suffice it to say that “hadronization”, as illustrated in Fig. 2.17, occurs when the mass scale 

of a process is such that QCD is strong, ~ GeVQCD 2.0~Λ . The complete reaction can be 

factorized into different energy regimes corresponding to different distance scales. At very high 

mass scales the elementary process occurs which can be perturbatively calculated because the 

color interaction is weak. At moderate masses, or transverse momentum scales PT >> QCDΛ , 

perturbative QCD can still be used, and the colored quarks and gluons radiate in a QCD 

“shower”.  

When the strong interactions become strong, these colored objects become “bleached” and 

evolve into an ensemble, or “jet” of colorless hadrons. The quark or gluon “jet” is expected to 

look something like Figure 2.10. The “jet” of hadrons that emerges has the approximate 

direction and momentum of the parent quark or gluon.  
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Figure 2.17: Schematic representation of the evolution of quarks produced in the final state of an interaction. In the 
high energy regime the quarks are almost free particles and the process is calculable.  In the intermediate energy 
range we can again use perturbative QCD.  At an energy range where the scale factor for QCD is the typical energy, 
0.2 GeV, hadronization and strong decays of hadron resonances occurs, which must be treated phenomenologically 
because the coupling is strong [ref. 7 - with permission]. 

Unstable particles like the W, Z and top quark all have decay widths ~ 1 GeV. Therefore 

they decay in a distance 0.2 fm, before they “hadronize” at a distance scale of ~ 1 fm. This is 

why there is no “toponium” – the QCD bound state of a top and anti-top quark. It decays before 

the bound state can form, t b W+→ + . 

The scattering of the quarks that we, for now, simply assume to exist inside the proton 

leads to a "jet" of particles traveling in the direction of, and taking the momentum of, the parent 

quark. We assume that the proton and (anti)proton contain quarks and gluons, which have a 

limited transverse momentum ~QCDΛ . A “dijet”, or two jet, event is shown in Fig. 2.18. There is 

energy in both the electromagnetic (lower – light shading) and hadronic (higher – darker 

shading) compartments now, as opposed to the case shown in Fig. 2.7, when the electron 

deposited all its energy in the electromagnetic compartment.  Note also that the “jets” are spread 

over several pixels.  The two jets are, however, reasonably well collimated and are 

approximately “back-to-back” in azimuthal angle, 1 2 ~φ φ π− .  



 

  58 
  

 
Figure 2.18: a) Schematic representation of a two jet event at CDF. The vertical axis is the transverse energy in the 
calorimeters.  The horizontal plane consists of the “pixels” in azimuthal angle and pseudorapidity b) tracking 
detector data for the dijet event [CDF - with permission]. 

The tracking detector azimuthal-radial plot for that event is also shown in Fig. 2.18. Recall 

that large momentum corresponds to small ”bend” angle in the magnetic field. Clearly the jet has 

an internal particle structure. There is a “core” of fairly high momentum particles near to the axis 

of the jet, with lower momentum particles associated with the jet but emitted at larger angles to 

the jet axis. The magnetic field also has the effect of “sweeping” the lower momentum particles 

away from the jet axis, as can be seen in Fig. 2.18b. 

 

A polar angle projection of a D0 “dijet” event is shown in Fig 2.19. Again the jets are fairly 

well collimated in solid angle, deposit energy in both compartments of the calorimeter, and are 

roughly back-to-back in polar angle.  

 

a) 
 
 
 
 
 
 
b) 
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Figure 2.19: Schematic representation of a two jet event at D0.  The shading represents the scale of energy deposited 
in the calorimeters. The first compartment is the electromagnetic calorimeter followed by two hadronic 
compartments.  This is a projection in polar angle [ref 8 - D0 - with permission]. 

The description of “hadronization” has recourse to experimental data on the momentum 

distribution of hadrons found in jets (e.g. Fig. 2.18).  Representative data are shown in Fig.2.20. 

We simply define a distribution of the hadronic “fragments” of the quark or gluon in z, D(z), 

where z is defined to be the fractional jet momentum taken off by the hadronic fragment, z = 

Phadron/Pjet .   The distribution D(z) is roughly of the form azzzD )1()( −= . 

 
 

Figure 2.20: Distribution D(z) of the fractional energy of a hadronic jet fragment. Note the steep falloff with 
increasing z [ref.9 - with permission]. 

The efficiency to “tag” a jet as having originated from a heavy flavor parent (b quark) 

depends on the momentum of the jet. Higher energy jets have longer decay lengths (relativistic 

time dilation). However, the existence of many fragments means that the ability to find the 

secondary vertices is not perfect. Therefore, if we wish to suppress the large background of light 
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(u, d) quark or gluon jets to an acceptable level, the efficiency to tag the b jet is reduced. 

Multiple scattering error also makes the rejection more difficult for a low jet momentum. Monte 

Carlo predictions from the CDF experiment at the Fermilab Tevatron are shown in Fig. 2.21. 

Note the rise of the efficiency with transverse momentum to a level of ~ 50% for jet transverse 

momentum > 50 GeV. 

Detection and measurement of jets is by way of calorimetric determination of the energy of a 

localized ensemble of hadrons. We need to know how accurately we can detect and measure the 

jets given that we know the single particle resolution of a calorimeter. We assume we know the 

numerical value of the constants a and b in Eq.2.1. Single particle data are available by utilizing 

test beams supplied at accelerators, for example. 

 

 
Figure 2.21: Efficiency for tagging a heavy flavor jet as a function of the transverse momentum of the jet. The 
efficiency for false tagging of light quark or gluon jets is small under these conditions at all momenta [ref. 10 -with 
permission]. 
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The ensemble energy is the sum of the single particle energies, +++= 321 EEEE . If the 

stochastic term dominates in the error on the measurement of individual hadrons, we find that the 

energy resolution of the ensemble is the same as the single particle resolution, EaEdE /~/ . 

Therefore, if we have, for hadrons typical values like, a ~ 50%/√GeV and b = 3%, we expect to 

measure the energy of a 100 GeV quark or gluon jet with an accuracy of  ~ 5%. 
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In the very high energy case where only the constant term is important, the ensemble is 

measured more accurately than the single particle. This serves to justify ignoring the constant 

term in Eq.2.9. 
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If the energies of the jet fragments are equi-partitioned, then there are n terms of equal 

magnitude 1/iz n= . 

 / ~ /dE E b n                                                                 2.11 

For a jet-jet mass, M, measurement, we assume that the angular error is not the dominant 

error. This will be the case for objects whose momentum is less than their mass because then the 

angle between the jets is large. Note that the two body mass is 
2

1 2 1 2 1 2 1 2 1 2( ) ( ) ~ 2 2( )M P P P P P P E E P Pµ µ
µ µ= + ⋅ + = − ⋅

� �

 For massless jets “decaying” 

approximately at rest the error on dijet mass due to the energy errors on the two jets can be 

calculated assuming 2/~~~,1~cos 2112 MEEE−θ . For a 100 GeV mass, a 5% measurement 

of the mass is expected.  
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The reconstructed mass of a W boson decaying into two quark jets is shown in Fig. 2.22. 

The resonant W mass is measured with a standard deviation of ~ 3 GeV. Thus the fractional 

mass error is ~ 3.75 % which is of the expected order of magnitude. In addition, precise energy 

information on individual hadrons from the tracking subsystem can also be used for the charged 

hadrons. This technique will allow us to improve the kinematic measurements of the jets beyond 

the accuracy available by purely calorimetric methods. 
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Figure 2.22: Distribution of the dijet mass reconstructed from energy measured in a calorimeter. Note the resonant 
peak at the W mass and the experimental width due in part to the errors in the energy measurements.  [ref.11 – with 
permission]. 

The neutrinos are “measured” indirectly by looking at the “missing transverse energy”, 

assuming that the initial state has zero transverse energy. This measurement involves a 

“collective” variable, as all the transverse energy in an interaction must be measured in order to 

find out how much is missing. There are errors due to the limited angular coverage of the 

detectors, finite energy resolution of the calorimeters, and failure of low momentum particles to 

even reach the calorimeters if there is a strong solenoid magnetic field. 

 

In the simplified case of an interaction containing only two jets with no longitudinal 

momentum the jet energies are, 2/~~ 21 MEE .  We assume that the stochastic term dominates 

the energy resolution. The missing transverse energy is denoted by TE/ . The missing transverse 

energy due to simple jet energy mis-measurement is then 21~ EEET −/ . The error on the missing 

energy is: 

 ~ ~T T
dE a M a E/ ∑  2.13 

Therefore an event containing a dijet of mass 100 GeV has a total transverse momentum of 

~ 5 GeV due to jet energy mis-measurement, if a ~ 50% (see Fig. 2.7).  We assert that the 

generalization to the case of many jets in the final state is as shown in Eq.2.13 where we sum 

over the transverse momentum of all particles in the interaction.  
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We now have approximate expressions for the expected calorimetric energy error expected 

for jet energy, dijet mass, and missing transverse momentum. We will use these estimates in our 

discussions of search strategies for the Higgs boson. 

An event with a single W boson produced which decays into an electron and a neutrino is 

shown for the D0 detector in Fig. 2.23. The electron energy goes entirely into the 

electromagnetic compartment (in the +y direction here). The missing energy measured in the 

calorimetry is also shown, (in ~ the –y direction) indicating the 2-body nature of the W decay. 

This is another example of using the energy deposited in all the calorimeter “pixels” to infer the 

transverse energy that is missing. 

 
Figure 2.23: Schematic azimuthal – radial view of a D0 event with a single W in the final state. The missing energy 
in the event is close to being back-to-back with the deposited electron energy [D0 – with permission]. 

Another event with missing energy in the final state is shown in Fig. 2.24. In this case a W 

and Z boson are produced, where the W decays into e+ν, while the Z decays into an e+e- pair. 

Note the back-to-back nature of both the Z and W decays indicating that the W and the Z are 

both produced with little transverse energy, and that the missing energy roughly balances the 

transverse energy of the electron from the W decay. 
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Figure 2.24: Schematic azimuthal – radial view of a D0 event with a W and Z produced in the final state. The W 
decays into an electron ( ~ -y) and a neutrino (~ +y) while the Z decays into an electron-positron pair (~ +x and – x) 
[ref.11 - D0 – with permission]. 

Transverse momentum balance can also be used for “in situ” detector calibration. The 

transverse energies are simply assumed to balance on average, and this assumption is used to 

extend the calibration of the mean from a calibrated pixel to an uncelebrated one. This procedure 

is illustrated in Fig. 2.25. 

 
Figure 2.25: Distribution of the fractional jet transverse energy difference in dijet events.  Note the sharp peak at 0 
and the steep falloff of the distribution, which appears to be almost a pure Gaussian. The line is a Gaussian fit to the 
data. [ref.8 -D0 – with permission] 

2.5 Muon Systems 

The muons exiting from the vertex are charged particles, and thus have their vector position 

and momentum measured accurately first in the tracking subsystem. However, muons are rarely 
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produced, and our job is to pick out which track is a muon in order to trigger on it. Particle 

identification is achieved by exploiting the fact that muons (of energy < 300 GeV) do not radiate 

appreciably, nor do they have strong interactions. Therefore, they pass through the calorimetry 

depositing only ionization energy (see Fig. 2.13). As they pass through the return yoke of the 

magnet, all the other particles have been absorbed by the calorimetry, see Fig. 2.11. Therefore 

particles which are observed in the muon system are assumed to be muons, and the issue is to 

trigger cleanly on these seldom produced particles. The most accurate momentum measurement 

of the muon comes from the tracking subsystem, while a redundant momentum crosscheck and 

particle identification comes from the muon tracking chambers. The two distinct measurements 

are illustrated schematically in Fig. 2.26. 

 
Figure 2.26: Schematic azimuthal-radial layout of muon detection in the CMS experiment.  The muons are first bent 
in the central magnetic field and detected/measured in the tracking subsystem.  After traversing the calorimetry and 
magnet coil the muon is subsequently bent in the steel return yoke and re - measured in the muon chambers 
embedded in the steel [ref.1, CMS – with permission]. 

The main function of the muon system is to perform particle identification on the muons 

and to provide a muon trigger. The trigger is drastically simplified because almost the only 

particles that survive to enter the muon detectors are muons. Therefore, the first task is to 

“pattern recognize” a clean trajectory in the muon detectors in an environment which is quite 

sparsely populated with particles.  
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What is required of the trigger is a reasonably accurate measurement of the muon 

transverse momentum. A good measurement is needed because there are many low transverse 

momentum muons, which are of little interest. These muons arise from heavy quark, Q , decays, 

Q q µµ ν−→ + + where the Q may arise from a virtual gluon “decay”, QQg → . These muons 

are copiously produced (Fig. 2.27) and must be rejected in the trigger lest they swamp the higher 

momentum muons of interest that are due to the decays of W and Z bosons and other rarely 

produced objects. 

The task becomes clear when we explore the source of muons at proton-(anti)proton 

colliders. Muons from the produced b particles dominate at low transverse momentum, where the 

scale is set by the b quark mass, ~ 5 GeV, as shown in Fig. 2.27. At higher momenta, where the 

scale is given as ½ the gauge boson W or Z mass (two body decay) or ~ 40 - 45 GeV, the main 

source of muons is the decay of gauge bosons (see Table 2.1). There are no mass scales yet 

known above this, so searches for new heavy particles are made in the tails of the distributions of 

muons from W and Z decay. 

 

Figure 2.27: Distribution of the transverse momentum of muons measured in the UA1 collider experiment at CERN. 
The two main sources of muons are the decay of heavy quarks at low transverse momentum and the decay of W and 
Z gauge bosons at high transverse momentum [ref.14, UA1 – with permission]. 

The invariant mass distribution of dimuon events from D0 is shown in Fig. 2.28. The two 

body decay −+>− µµψ with a ψ resonant mass of ~ 3.1 GeV is observed. The ψ  is a narrow 
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bound state of a charm – anti-charm quark pair. This resonant peak can be used to check the 

calibration and alignment of the muon chambers in situ. 

 
Figure 2.28: Distribution of the mass of dimuon events in the D0 detector.  Note the resonant ψ peak, which is used 
for calibration of the momentum scale of the muon detectors. Note also that the width is set by the multiple 
scattering of the muons in the steel and is not due to the intrinsic accuracy of the chambers [ref.13, D0 – with 
permission]. 

The mass resolution shown here is rather poor. This is because the momentum used in this 

plot was determined solely from the muon chambers as would be required in the crudest trigger, 

which is the first of several trigger decisions. Since the chambers are interspersed in an iron 

return yoke, the momentum measurement is limited by multiple scattering (see Eq.2.1) to a 

~15% error. The momentum impulse, or change in transverse momentum, due to the magnetic 

field B existing over a distance L is ~ BL. The multiple scattering impulse in traversing that 

same region is L~  where the square root is characteristic of stochastic behavior. Thus the 

ratio, which determines the fractional momentum resolution, scales as LB/1~ . The magnetic 

field is limited by iron saturation to ~ 2 T. The length of steel is limited by financial and 

mechanical considerations to ~ 1 m. Hence, the limited momentum resolution for muons 

measured in steel. The multiple scattering impulse is MSTP )(∆ , while the magnetic field impulse 

is BTP )(∆ . 

 15.0~)/()(~/ BTMST PPPdP ∆∆  2.14 

In order to obtain a better measurement, we would have to supply tracking chambers in a 

volume with magnetic field and without multiple scattering. If this is done after the calorimetry 

the tracking is clean because there are almost only muons that survive. However, it makes for a 

large, and hence expensive, detector. If we instead wish to use the inner tracking system, we 
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must extrapolate the track from the muon system back into the tracking chambers and attempt to 

match tracks in vector position and momentum. This matching procedure is, in turn, limited by 

the multiple scattering errors induced by passage of the muons through the calorimetry that 

separates the two tracking systems. Different experiments have made different choices. There is 

no “correct” decision in this matter in any event. Precision mass measurements will always come 

from the inner tracking system while particle identification will come from the muon detection 

system. 

 

2.6 Typical Inelastic Events 

The vast majority of interactions in a proton – (anti)proton collider are uninteresting. They 

occur at low mass scales ~ QCDΛ  where the dynamics is strong, and hence difficult to compute. 

The secondary particles in such a collision have low transverse momentum, ~T QCDP Λ . We are 

interested in high mass states, which implies final state particles with a large transverse 

momentum.  

Many of the interesting physics processes that we will discuss in the later Chapters have pb 

(1 pb = 10-36cm2) cross sections, while the total inelastic cross section, making “minimum bias”, 

or inclusive inelastic events, is ~ 100 mb which is 100 billion times larger. Obviously, we are 

looking for rare processes and we need to trigger incisively, as noted previously.  

It also must be remembered that, even though we have an “interesting” process occurring at 

large PT in an interaction, there are also all the soft fragments of the remaining quarks and gluons 

that hadronize and form the “underlying event”. Indeed, most of the particles in an “interesting” 

event are themselves uninteresting.  Furthermore, the detectors we use may not be fast enough to 

resolve individual interactions. In that case we have a “pileup” of “minimum bias” events within 

the resolving time of the detector. Therefore, we need to understand some of the basic features of 

these events as they form an irreducible background on top of which resides the interesting high 

PT fundamental interaction wherein new discoveries lie. 

In Fig. 2.29 we display a plot of the mean transverse momentum of all produced charged 

particles in “minimum bias” events or typical inelastic interactions. This quantity, <PT> is a 

weak function of the total available C.M. energy. At 10 TeV, it is perhaps 0.5 GeV. 
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Figure 2.29:  Mean transverse momentum of produced charged particles as a function of the center of mass energy 
in p - (anti)p collisions.  Note the logarithmic dependence on center of mass energy [ref.15, CDF – with permission].  

The scale for the mean transverse momentum is the QCD scale, which is not unexpected. 

 QCDTP Λ>< ~  2.15 

We assert that −+ πππ ,, o  are produced in roughly equal numbers and are the dominant 

type of hadrons produced in inelastic collisions. Pions are produced ~ uniformly in 

pseudorapidity. The density of charged particles per unit of pseudorapidity is shown in Fig. 2.30. 

It is a weak function of the C.M. energy. At 10 TeV the density is expected to be ~ 6 charged 

particles per unit of rapidity, or ~ 9 pions per unit of η. 

 
Figure 2.30: Mean number of produced charged particles per unit of pseudorapidity as a function of center of mass 
energy in p – (anti) p collisions.  Note the rough logarithmic dependence of particle density on center of mass energy 
[ref.16, CDF – with permission].  

Therefore, each “minimum bias” interaction in a detector which operates at the 14 TeV 

C.M. energy of the LHC and fully covers angles with |η| < 5, creates 90 = 10 x (6+3) charged 
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and neutral pions with a total scalar transverse energy deposit of 45 GeV. We assert that the 

“underlying event” in a “hard” or high transverse momentum collision also has a similar 

transverse momentum deposit for the particles produced in addition to the high transverse 

momentum ones.  

If we are operating at high interaction rates, such as are expected at the Large Hadron 

Collider (LHC) at CERN, there may be 20 “minimum bias events” in a beam-beam bunch 

crossing which cannot be temporally resolved. This is the minimum “pileup” because two 

bunched beam crossings are separated by only 25 nsec and we need to use very fast detectors if 

we are to have “only” 20 overlapping events. The minimum “pileup” is a beam bunch containing 

1800 particles with 900 GeV of deposited transverse energy. If we blindly apply Eq.2.13, we 

expect ~ 15 GeV of missing transverse energy, on average, simply due to the calorimetric energy 

error made in measuring all the particles in the bunch crossing. 

A jet is typically defined to be an ensemble of particles possessing a large transverse 

energy deposited in a small circular region of radius, R, in ),( φη  phase space, R < 0.7. A finite 

jet size in R is required if we are to record all the jet energy, as seen in Fig. 2.17 and 2.18. Since 

there is a substantial “pileup” of transverse energy, false jets may be detected at low jet 

transverse energies ~ 30 GeV, while at higher jet energies the extra pileup energy must also be 

accounted for and the jet energy corrected. 

Triggers and reconstruction algorithms need to look at transverse flow within the jet cone 

to select real jets, which have a “core” as opposed to ~ uniformly distributed pileup. For 

example, a cone of radius R ~ 0.7 contains > 100 pixels of the size shown in Fig.2.16. That 

granularity is sufficient to resolve the details of energy flow within the cone defining the total jet 

energy. Jets have a limited momentum transverse to the parent direction, kT, and a distribution 

D(z) of the momentum of the hadronic fragments with a “leading” hadronic fragment taking off, 

on average, a fraction, <zmax > ~ 0.2, of the parent jet energy - see Fig.2.20. 

The “pileup” transverse energy found on average in any “cone” of radius R ~ 0.7 is 20 

events x 0.5 GeV/particle x 9 particles/area x (πR2) / 2π ~ 22 GeV. We must use the additional 

information on the structure of the energy flow within the jet to reduce the number of false jets 

due to pileup 

As seen in Fig. 2.31, a cut on the transverse energy flow within a cone is a good 

discriminant between jets with transverse energy ~ 30 GeV and “fake jets”. The signal in Fig 

2.31 consists of “tag jets” from the WW fusion process (Fig. 2.14), while the background is due 
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to pileup of <n> = 17.3 minimum bias events, on average. Clearly, asking for a “leading jet 

fragment” with a large fraction of the total jet transverse energy works fairly well. 

 

 
Figure 2.31: Efficiency for the rejection of fake jets with respect to the efficiency for finding tag jets at high 
luminosity in the CMS detector. The cut is on the leading pixel transverse energy for events with a cone energy of 
40 GeV [CMS – with permission].   

2.7  Complex Event Topologies in D0 and CDF 

Clearly, several different fundamental particles of the SM can occur in a complicated event. 

An example is the CDF event shown in Fig. 2.32. The CDF detector has three main detector 

systems; tracking - Silicon + ionization in a magnetic field, scintillator sampling calorimetry, 

(EM - e, γ and HAD - h), and ionization tracking for muon measurements.  

This event contains four jets as recognized by identifying localized energy deposits in the 

calorimeter pixels. In addition there is an electron, recognized as energy deposit in the 

electromagnetic compartment of the calorimetry, with a matching charged track in the tracking 

detector. There is also a neutrino, as identified by the existence of missing transverse energy in 

the calorimetry. In addition, two of the jets have secondary vertices in the tracking subsystem, 

which makes them possible b quark candidates.  
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Figure 2.32: A complicated event in the CDF detector.  This event contains an electron, four jets, and missing 
energy due to neutrinos. Note also that there are secondary vertices in the event indicating that some of the jets are 
the decay products of heavy quarks [CDF – with permission]. 

A complex event from D0 is shown in Fig. 2.33. The D0 detector has three main detector 

systems; ionization tracking, liquid argon calorimetry (EM, e, and HAD, jets,), and magnetized 

steel + ionization tracking muon, µ, detection/ identification.  

This event, shown in a polar view, has jets in both the compartments of the calorimetry. It 

also has a muon candidate (~ +y), which is confirmed by the presence of small ionization energy 

in the calorimetry and an associated track.  In addition, there is an electron candidate with energy 

deposit only in the electromagnetic compartment (small radius) with an associated track (~ -y). 

Finally, there is a neutrino candidate in the event, inferred from the missing transverse energy. 
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Figure 2.33: A complicated event in the D0 detector.  This event contains jets, a muon, an electron, and missing 
energy [D0 – with permission].   

The examples given here indicate the complexity of the events that can be studied in 

general purpose detectors. We conclude that a well-designed general purpose detector can use 

specialized subsystems to identify and measure photons, electrons, muons, jets of quarks and 

gluons, and neutrinos. Heavy quarks and leptons are further identified by searching in the tracker 

for separated secondary vertices. The W and Z gauge bosons decay rapidly and are identified as 

resonant peaks in the mass of their decay products.  

Particle tracking affords very accurate measurements of electrons and muons. Precision 

electromagnetic calorimetry provides energy measurements of order 1 %  (100 GeV energy) for 

photons and electrons. Gluon and quark jets are measured somewhat more poorly in the hadronic 

calorimetry, perhaps at the 5 % level (100 GeV energy). Neutrinos are also “measured” in the 

calorimetry, to a similar precision, but the longitudinal component of the neutrino momentum is 

not well measured due to the necessarily (e.g. vacuum beam pipes) incomplete polar angle 

coverage of the detectors.  

 



 

  74 
  

Exercises 
 
1. How far, on average, will a b quark with lifetime τc = 475 µm and energy 60 GeV travel 

before decaying? 

2.      Evaluate the estimated muon lifetime, Eq.2.2, with muon mass = 0.105 GeV. 

3.     Use COMPHEP to find the muon lifetime, e2->e1,N1,n2. Check the diagram(s). Are they        
what you expected? 

4.      Use COMPHEP to find all 2 body decays of the Z, Z->2*x. Evaluate the branching ratios. 

5. Suppose a charged particle with 1 GeV momentum is bent by 1 radian in traversing 1 m of 
tracking detectors. What is the expected momentum error for a 1 TeV momentum particle 
if the angular error is radd µφ 100~ ? 

6. What is the relationship between the differential of the pseudorapidity (Eq.2.7) and the 
polar angle? 

7. For a 100 GeV pion, estimate the total number of shower particles produced (Eq.2.8) and 
the implied fractional energy error. 

8. Estimate the pseudorapidity (see Fig.2.14) if a 1 TeV u quark in the incident 7 TeV proton 
emits a W with a transverse momentum of 40 GeV. 

9.  Estimate the emission angle, with respect to the jet axis, of a z = 0.1 fragment of a 100 GeV 
jet if the fragment transverse momentum is ~ 1 GeV. 

10.  Work out explicitly the result given in Eq.2.9, that the stochastic error on an ensemble of 
particles is the same as that for a single particle. 

11.  Work out explicitly the result given in Eq.2.10, that the constant error for an ensemble of 
particles is less than that for a single particle. 

12.   What is the dimuon opening angle for a 10 GeV ψ decay ( mass 3.1 GeV)? 

13.   Use COMPHEP to find the decay width of the tau. Compare to the width quoted in      
Chapter 2, e3->n3, 2*x. Evaluate the 6 sub processes to find branching fraction and total   
width. 

14.  Use COMPHEP to find the total decay width for the heavy quarks and leptons discussed in   
this Chapter, e3->3*x, c->3*x, b->3*x. Compare to the data plotted in this Chapter. 

15.   Explicitly work out the threshold for pion production in pion – proton interactions. The 
energy threshold occurs when the reaction uses all the energy to produce mass and none to 
give the reaction products kinetic energy. Thus, all particles are at rest in the C.M. at 
threshold.  

16.  Use COMPHEP to look at “tag jets” in d,u->u,d,H. Plot the distribution of u rapidity and 
compare to the result given in the text. 
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3.  Collider Physics 
 

“It is of the highest importance in the art of detection to be able to recognize out of a number of 

facts which are incidental and which are vital. . . . I would call your attention to the curious 

incident of the dog in the nighttime. The dog did nothing in the nighttime.  That was the curious 

incident.” - Sir Arthur Conan Doyle 

“Science is the refusal to believe on the basis of hope” – C.P. Snow 

In the previous two chapters we first defined the fundamental particles of the SM and their 

interaction and then discussed how they can be detected and their properties measured. We now 

know roughly the quality of the measurements we can make. Finally we have given some 

examples of COMPHEP calculations and this tool is available to us. 

Now we turn to the question of how particles are produced in proton – (anti)proton, 

( pppp −− , ) collisions. We will deal only with high transverse momentum, or high mass 

interactions.  There are several reasons for this.  The first is that the QCD is weak at high mass 

scales, and therefore high mass processes can be calculated perturbatively. Secondly, the vast 

majority of interactions produce particles at low transverse momentum.  Thus, the high 

transverse momentum interactions are the rare ones that stand out above the background.  New 

phenomena can be expected to have a favorable signal to noise ratio in events with particles 

having a high transverse momentum. Third, if we deal with high mass fundamental interactions, 

the strong interactions can be “factored out” of the problem, as we will see. 

We can define the distribution of quarks and gluons in the initial state proton using 

experimental data. The dynamics is non-perturbative which therefore is not calculable at present. 

However, the basic interaction of the SM particles can be predicted for a given process since it is 

a fundamental process consisting of a point-like interaction between fundamental particles. We 

will argue that, at high transverse momenta, the basic proton -  (anti)proton interaction factorizes 

into an experimental description of the source of the fundamental particles in the proton, a 

calculable fundamental process and (perhaps) a second experimental description of the 

hadronization of the final state fundamental particles into asymptotic, colorless final states.  

3.1 Phase space and rapidity - the “plateau” 

We begin by looking at the kinematics of the produced, or “secondary” particles. The 

rapidity variable, y, is defined in Appendix C, along with other kinematic variables and details 

which are used in this chapter.  The magnitude of the particle momentum is P while energy is E. 

The momentum component parallel to the beam is labeled by ||P , while the perpendicular 
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component is defined to be TP . The solid angle element is Ωd . The rest mass is m, and the 

azimuthal angle is φ. 
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If the transverse momentum is limited by dynamics, we expect (Appendix C) a particle at 

small y will have a uniform distribution in y. In general all produced particles are uniformly 

distributed in rapidity, at least at wide angles, or small rapidity.  

As shown in Appendix C, the rapidity, y is approximated by the pseudorapidity variable, η, 

defined in Chapter 2 if the particle masses are small with respect to the transverse momentum.  

Therefore, the detector shown in Chapter 2 was segmented into “pixels” of equal one particle 

phase space, ~ η φ∆ ∆ , by design.  

As a numerical example, the rapidity of an incident proton in a proton – (anti)proton 

collision is given below for the Fermilab Tevatron and the CERN LHC.  The maximum value of 

y at fixed E occurs at PT = 0, maxcosh /y E m γ= = .  
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We now give an example of the rapidity “plateau”, or region of uniformly distributed y 

centered on y = 0. In this Chapter and in later Chapters, Monte Carlo results are either the result 

of “homebuilt” programs written by the author or arise from using the COMPHEP code - 

running under Windows2000. More details for COMPHEP are given in Appendix B. Thus, the 

exposition given in the text is designed to be complementary to a ‘hands on” exploration by the 

student using the COMPHEP code. 

COMPHEP provides a display of the Feynman diagrams that contribute to the process that 

is defined by the user, and we will often display them as they help very much in visualizing the 

nature of the particular problem.  A Feynman diagram shows the space-time evolution of the 

fundamental particles of the SM, which scatter as they exchange the force carriers we discussed 

in Chapter 1.  Space is vertical and time is horizontal in the diagrams given in this text. We show 

in Figure 3.1 the fundamental gluon scattering diagrams provided by COMPHEP, where two 

gluons existing in the two incident protons either annihilate to form a single virtual gluon 

(trilinear coupling) or exchange a virtual gluon in analogy to Rutherford scattering.  
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Figure 3.1: The COMPHEP Feynman diagrams for gluon scattering. 

Proton – (anti)proton scattering has this fundamental process as a sub-process, as we will 

explain later. For now, we will simply accept the results of the COMPHEP Monte Carlo 

program, which are given in Fig. 3.2, and note the existence of a rapidity “plateau” which 

indicates that the produced particles follow single particle phase space at wide angles.  

 
 

Figure 3.2: Rapidity distribution for produced gluons at the LHC (14 TeV p-p C.M. energy). The small arrows 
indicate the limits of the angular coverage of the detector shown in Chapter 2. The larger arrows indicate the initial 
proton beam rapidity in the C.M. 

 

Note that the “error bars” shown in the figure are provided by COMPHEP as an estimate of 

the error in a given data point due to the limited number of Monte Carlo events which are 

generated. The interested student can run COMPHEP sessions with a variable number of trials, 

plot the results, and see how the error bars shrink with the longer computations. 

The kinematic limit is at rapidity ~ 9.6 (final state particle energy cannot exceed the initial 

particle energy). The region around y = 0 (90 degrees in polar angle) has a ~ flat “plateau” with 

width ∆y ~ 6 for the LHC. Recall the detector coverage out to pseudorapidity of  +5 and -5 

discussed in Chapter 2. That is, indeed, a good match to the distribution shown in Fig. 3.2.  The 

width of the “plateau” depends on the produced particle mass and transverse momentum, 
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(Eq.3.1) but only logarithmically. Therefore, the plateau width at the LHC will be of order ~ 6 

independent of the dynamics or of the production process, at least for mass scales small with 

respect to the C.M. energy. 

There are two general purpose experiments in progress at the Fermilab Tevatron 

accelerator complex, called D0 and CDF. We have already shown examples of events from D0 

and CDF in Chapter 2. We will now use data from these experiments to illustrate production. For 

example, data from the Tevatron experiment D0 are shown in Fig. 3.3. The cross-section for the 

production of “jets” arising from the fragmentation of quarks and gluons is shown as a function 

of the jet transverse energy for different rapidities.  We will use energy and momentum of a jet 

interchangeably because we assume that jets have negligible masses.  

 
Figure 3.3: D0 data for the jet cross section in different pseudorapidity ranges as a function of transverse energy of 
the jet [ref.1 – with permission]. 

We can easily see that for ET small with respect to the C.M. energy of 2 TeV (ET ~ 100 

GeV) there is a rapidity “plateau” at the Tevatron with ∆y ~  +-2, total width ~ 4. Comparing 

LHC (Fig. 3.2) Monte Carlo model predictions and Tevatron data (Fig. 3.3) we see that the 

plateau width increases with C.M. energy increase. We can also see that the plateau width 

shrinks at fixed C.M. energy as transverse energy increases, as expected from the definition of 

rapidity given in Eq.3.1.  

3.2 Source Functions – protons to partons 

We assume that the proton is the incoherent sum (no quantum phases of the wave function) 

of “valence” u and d quarks, radiated gluons, and a “sea” of quark and anti-quark pairs. The 

proton quantum numbers are satisfied if the proton is thought to be a bound state of u + u + d 
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“valence” quarks. The “sea” gluons can arise from radiation by the valence quarks and the 

antiquarks can arise from subsequent gluon “splitting” or virtual decay into quark-antiquark 

pairs.  

The lack of interference in quantum amplitudes comes from the fact that there are two 

fundamental scales to the reaction, the binding energy scale, or the size of the proton, and the 

“hard” or fundamental collision scale. We will operate at “hard” or large transverse momentum, 

TP , scales well above the binding energy scale, QCDTP Λ>> . A proton will disassociate into a 

virtual state of “partons”, or fundamental particles of the SM. This state has a lifetime~ 1/ QCDΛ , 

which is long with respect to the collision time that is set by 1/TP . During the hard collision, the 

partons can be considered to be free. Therefore the partons scatter incoherently and the proton 

cross section is simply the sum of the individual parton cross sections.  

In this limit, the quarks and gluons inside the proton can be represented by classical 

probability distribution functions. The probability to observe a given constituent of the proton is 

described by a distribution function, f(x), (see Fig. 3.4) where x is defined to be the fraction of 

the proton momentum carried by the parton. These distributions are necessarily determined by 

experiment because they describe the proton binding mechanism at mass scales where QCD is 

not perturbatively calculable. In this text we will simply accept them as a known input. We assert 

that the distribution functions are universally applicable to all fundamental processes as are the 

fragmentation functions (see Chapter 2) describing the transition from the final state partons to 

the asymptotic hadron states.  

 
Figure 3.4: Schematic representation of the partons in a proton (A) -  (anti)proton (B) collision. The distribution 
functions for the initial state partons are shown, along with the kinematic definitions of the parton two body 
scattering and coupling constants.  

 The C.M. energy of the p – (anti)p state A + B is s .  The fundamental “parton” (or 

point-like particle) reaction is 1 + 2 � X � 3 + 4.  The fundamental parton dynamics is given a 
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schematic representation as the product of two coupling constants. The first refers to the initial 

state, 1 + 2 forces, while the second refers to the final state, 3 + 4. The two body parton 

scattering occurs at C.M. energy (or mass of the composite state X) ofs
�

. The process is 

factorized into the distribution of partons in the initial state, the subsequent scattering of those 

partons, and the final fragmentation of the final state partons into hadrons, if that is applicable.  

In what follows we will sequentially examine the different factor from left to right. First we 

look at the “underlying event” which results from the fragmentation of the fractured proton and 

(anti) proton after the hard emission of the initial state partons. Then we will consider the 

distribution functions. In Section 3.3 the initial state 1 + 2 is explored, followed by the point like 

scattering, 1 + 2 � 3 + 4 in Section 3.4. The one and two body final states are then discussed in 

Section 3.5 and 3.6 respectively. Fragmentation of the final state partons is considered in Section 

3.7, which completes this chapter. 

The residual fragments of the fractured p and (anti) p evolve into “soft”, PT ~ 0.4 GeV, 

pions with a charged particle density ~ 6 per unit of rapidity and equal numbers of π+, πo, and  

π-. We have already mentioned the “underlying event” in Chapter 2. We expect that every 

interaction will contain a similar distribution of “soft”, or low transverse momentum particles. In 

Fig. 3.5 we show the transverse momentum spectrum and the pseudorapidity distribution for the 

particles produced at low transverse momentum in proton -  (anti)proton collisions with no 

restriction on the final state. The jargon for these events is – “minimum bias” events or 

“inclusive” inelastic interactions, those which occur if no selection, or trigger, on the final state is 

imposed. 

There is clearly a plateau in pseudorapidity with a particle density, which rises slowly with 

C.M. energy. The plateau width also increases with C.M. energy, as expected. The transverse 

momentum distribution is tightly localized to values < 0.5 GeV. In general, the C.M. energy 

dependence for PT < 1 GeV is small. The transverse momentum behavior can be fit to a power 

law at low transverse momenta. 
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The coefficient A is of order 100 mb. Since 100 mb is roughly the total inelastic cross 

section, the low PT particles make up the bulk of those produced in an inelastic interaction in p – 

p collisions. The falloff of the cross section at transverse momenta above ~ 2 GeV goes as a 

power of the transverse momentum. 
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Figure 3.5: a) Data at different C.M. energies on the cross section of charged particles produced in p – (anti)p 
collisions as a function of their transverse momentum [ref. 2 – with permission]. b) Data at different C.M. energies 
on the cross section of  produced charged particles as a function of C.M. pseudorapidity of the particle [ref. 3 – with 
permission]. 

The fragments of hadrons A and B at low PT merge smoothly with fragmentation products 

of  “minijets” or jets at “low” PT for transverse momenta higher than ~ 10 GeV. The production 

of gluon jets has a cross section of ~ 1 mb at a transverse momentum ~ 10 GeV. The boundary 

between the “soft” physics shown in Fig. 3.5 and the “hard scattering” shown in Fig. 3.6 is not 

very definite. The Monte Carlo prediction shown in Fig. 3.6 is a COMPHEP result for gluon – 

gluon scattering in 14 TeV p – p collisions (LHC). 

 
 

Figure 3.6: COMPHEP Monte Carlo results for the cross section for gluon “jet” production at the LHC at low 
transverse momentum. The additional line indicates a cross section, which decreases with transverse momenta as the 
inverse cube, 3/ ~ 1/T Td dP Pσ . 

a) b) 
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There is an approximate power law falloff (straight line on the log-log plot of Fig. 3.6) of 

the low transverse momentum jets. This characteristic behavior is ultimately due to the point like 

nature of the fundamental particles and their interactions in the Standard Model, as we will see 

explicitly later in this Chapter. 

Leaving the breakup of the fractured p – (anti)p we now look at the parton distribution 

functions. We will try to gain a qualitative understanding of their simplest characteristics. 
Suppose first that there was very weak binding of the u + u + d “valence” quarks in the proton. 

These quarks are the ones which give the proton its quantum numbers, such as charge = e = e(2/3 

+ 2/3 – 1/3). For weak binding, all three quarks would have the same velocity, as shown in Fig. 

3.7. 

 
Figure 3.7: Schematic representation of the momentum fraction of the three valence quarks in a proton. The binding 
is assumed to be very weak. 

We expect that the valence quark distribution function, f(x), is a very sharply peaked 

function centered at x = 1/3 in this case. The variable x is the fraction of the momentum of the 

proton carried by the fundamental particle, or parton. However, the u and d quark masses are ~ 5 

MeV (see Fig.1.1) and the proton mass is 940 MeV. Therefore the quark motion inside the 

proton must be relativistic since the effective mass of the total system is much greater than the 

sum of the masses of the constituents.  Since the quarks are bound together in a proton of size ~ 1 

fm, we expect, (∆x∆P ~ � , ∆x ~ 1 fm, P ~ ∆P ~ 0.2 GeV ~ ΛQCD), that they have momenta ~ 200 

MeV.   

Since the bound quarks are in relativistic motion, they can easily radiate gluons. This 

means that the gluons are distributed, for very small values of x, such that xg(x) ~ constant, 

where g(x) is the distribution function for gluons. Gluons themselves can then virtually “split” or 

“decay” into quark – antiquark pairs which implies that xs(x) ~ constant, where s(x) is the 

strange quark distribution function. For this reason a distinction is made between the valence 

quarks and the “sea” of radiated gluons and quark-antiquark pairs (see Fig. 3.9). 

We now justify the assertion that [xg(x)] is constant. The kinematic definitions for the 

emission of a massless boson of momentum k, energy ω, by a relativistic fermion of momentum 

P are given in Fig. 3.8. The quantity x is defined to be the fraction of the parent momentum 

carried off by the boson. 
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Figure 3.8: Schematic representation of the radiation of a massless particle of energy ω, momentum k by a particle 
of momentum P. The final state fermion has a fraction, 1-x, of the initial fermion momentum. 

In perturbation theory the reaction amplitude, A, in non-relativistic quantum mechanics 

goes as the inverse of the energy difference between the initial and final states (no bosons 

included) )/(1/1~ if EEE −=∆Α . Therefore, the amplitude for the radiation of a gluon of 

momentum fraction x goes as ~ 1/x, and the emitted gluon will be “soft”. We use the 

approximation that a high energy particle has, PPmPmPE ~2/222 +≈+= . 
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Using the conservation of both energy, ω+′= EE , and momentum, kPP
���

+′= , we assert 

that, after some considerable algebra, we find the relation ||cos kk == θω . Therefore, the 

massless radiated gluon will be ~ collinear with the parent, θ ~ 0. Radiated gluons are both soft 

and collinear.    

The experimentally determined distribution function of valence quarks, gluons, and sea 

anti-quark – quarks is shown in Fig. 3.9. There is a residual “memory” of the x ~ 1/3 value for 

the valence quarks, but the mean x value is reduced because of radiation. The gluons and sea 

antiquarks have the characteristic xf(x) ~ const  radiative behavior at small values of x. They are 

the dominant “partons” at low x values. At larger x values they are highly suppressed and the 

valence quarks dominate for x > 0.2. 

Let us briefly mention the reason why the distribution functions depend on the mass scale, 

Q, at which they are probed, as shown in Fig 3.9. We keep in mind that the variation with mass is 

slow – logarithmic. To lowest order we could ignore this variation, and we do so for the rest of 

this Chapter. COMPHEP, however, has the appropriate behavior built into the program. 

The “running” or variation of basic quantities with mass scale, conventionally called Q, is 

due to quantum corrections that contain additional powers of the coupling constants. Details are 

given in Appendix D. The root cause of the “running” behavior in the case of the distribution 

functions is the radiation by the colored quarks and gluons.  For example, a quark with 

momentum fraction x in the distribution function can be produced by a quark at a higher 

momentum fraction which has subsequently radiated a gluon and thus lost energy (see Fig.3.8).  

(1-x)P 
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 “valence” “sea” gluons 
 
 
 
Figure 3.9: a) Distribution of the momentum fraction of the valence up quarks in a proton. b)  Momentum 
distribution of the radiated anti - quarks in a proton. c) Momentum distribution of the gluons which provide the 
binding force in a proton [ref. 4 – with permission].   

QCD perturbation theory provides us with the description of the emission of a quark plus 

gluon by a quark. In principle we could now “evolve” the distribution functions, q(x,Q2), from 

one mass scale, Q,  to any other mass scale by solving a set of equations describing all the 

radiative processes that quarks and gluons undergo. The result, see Fig.3.9, is that as the mass 

scale increases the importance of radiative processes grows which enhances all the distribution 

functions at lower x, depleting them at high x. The gluon distribution grows rapidly at low x as Q 

increases. This behavior is seen in Fig. 3.10 for x < 0.02, where g(x) grows faster than 1/x.  

COMPHEP has two sets (MRS and CTEQ) of distribution functions available. Therefore, it 

is advisable for the student to run the program for the same process but using the two different 

distribution functions. If they are well measured in the region of x probed by the process in 

question, the results should be insensitive to the choice of distribution function set. If they are 

not, then there is a “theoretical” uncertainty in the predicted cross section because the 

distribution functions have been extrapolated to regions of x (or Q) beyond where they have been 

well measured. 

 

f(x) 

a)                          b)                     c) 
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Gluons are observed in other experiments to carry approximately half the proton 

momentum. That fact can be used to normalize the gluon distribution. A power law suppression 

of high x values is accomplished by assuming a 6(1 )x− factor in the xg(x) distribution.  

 ∫ =

−=

2/1)(

)1(2/7)( 6

dxxxg

xxxg
 3.5 

Some fits representing the measured gluon distribution function are shown in Fig.3.10. The 

discrete points are representative values of Eq.3.5, showing that this simple parameterization is a 

reasonable first approximation to the gluon distribution. Therefore, for gluon induced reactions 

we can also have confidence in our ability to make a ‘back of the envelope” calculation. 

 
 

Figure 3.10: Gluon distribution functions taken from fits to experimental data. The dots are a few points from Eq.3.7 
[ref. 5 – with permission]. 

3.3  2 body formation kinematics 

 The parton distribution functions give us the joint probability of finding a parton of type i 

at momentum fraction x1 emitted by hadron A and parton of type j at x2 from hadron B, 

)()( 21 xfxf B
j

A
i . In what follows we will drop some of the indices, but the context should be 

clear. The partons are assumed to have ~ no transverse momentum, since we argue that the scale 

for binding energy contributions to transverse momentum is ~ QCDΛ . The partons have 

longitudinal momentum PxpandPxp 2211 ==  respectively, where P is the momentum of 

the proton in the p – p C.M. 

 

xg(x) 

x 
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x1 x2  
Figure 3.11: Schematic representation of the initial state in parton – parton scattering initiated by a  p-p collision. 

The mass, M, and momentum fraction, x, of the composite 1 + 2 initial state is then 

found, by conservation of relativistic energy and momentum, in terms of the momentum 

fractions of the initial state partons and the p-p C.M. energy squared, s. The details are given in 

Appendix C, but 1 2x x x= −  should be obvious. 

                                               21
2

21 ,/ xxxsMxx −=≡= τ  3.6 

A typical value, <x> for the momentum fraction of the parton producing a state of mass M 

(at x = 0) at p – p C.M. energy s  is then /M sτ = .  

The width of the rapidity plateau, y∆ , can be roughly estimated by finding the  

kinematic limit when the momentum fraction, x, of the system approaches 1. We use  

the definition of rapidity (see Appendix C), ymPymE TT sinh,cosh || ==  and the definition of x, 

|| / sinh / 2 sinh /T Tx p P m y P m y s= = = . The width depends only logarithmically on the mass 

of the produced state and the C.M. energy. Note that x = 1 implies y = ymax and max2y y∆ = . 

 
(2 sinh / ) ~ ( / )

~ 2ln( / )

y
Tx m y s M s e

y s M

=

∆
 3.7 

A system of mass M is formed by a parton with x1 from proton A and a parton with x2 from 

(anti)proton B. The joint probability, PAPB, to form a system of mass M moving with momentum 

fraction x assumes independent emission of the two partons. The variable C in Eq.3.8 is a color 

factor having to do with normalization of the distribution functions, which we will explain later, 

as needed. The fundamental parton scattering is described by the cross section σ
�

 while the 

proton – (anti)proton cross section is σ 

 
1 1 2 2ˆ ˆ( ) ( ) (1 2 3 4)A B

A Bd P P d Cf x dx f x dx dσ σ σ= = + → +  3.8 

We make a change of variables in order to express the cross section in terms of observables 

in the final state, M and y, converting from x1 and x2, dx1dx2 = dτdx. Once we measure M and y 

in the detector, we can infer the values of x1 and x2, at least for two body scattering (see 

Appendix C). Assuming a plateau of width ∆y we can estimate the full cross section as follows,  

 

P                                                              P 

p1 p2 
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∆σ ~ (dσ/dy)y=0∆y. The value of ∆y varies only slowly with mass  (see Eq.3.7), and is a 

number of order 4 - 10 at the LHC. 

The last line of Eq.3.9 shows that the differential cross section is a function of a single 

dimensionless variable, τ. This is an immediate prediction of the model, independent of any 

particular dynamical assumptions. This “scaling” behavior is confirmed in a wide variety of 

hadron collider data. An example using jet data at two different C.M. energies is shown later in 

this chapter. We see also that in order to make further progress we must know the fundamental 

scattering process, )4321(ˆ +→+σd . We know this scattering cross section since we believe we 

understand the dynamics of the fundamental particles of the Standard Model. 

3.4 Point-like scattering of partons 

We are now, moving left to right in Fig. 3.4, at the point of considering the fundamental 

parton scattering process. In non-relativistic quantum mechanics, the Born approximation to the 

amplitude, A, for a process is the interaction Hamiltonian sandwiched between initial and final 

plane wave (free particle) states |i> and |f>, .| | ~ ( )iq r
I IA f H i e V r dr= < > ∫ � �

�

, which is just the 

Fourier transform of the interaction potential, VI(r) where , ~f iq k k q kθ= −
� �

�

 is the momentum 

transfer in the reaction. A familiar example is the 1/r Coulomb potential, which yields a Born 

amplitude ~ 1/q2 describing how the virtual exchanged photon propagates in momentum space. 

In turn this leads to a cross section (Rutherford scattering) which goes as the square of the 

amplitude ~ 1/q4~ 1/θ4 , which should be familiar.  

We use the relativistic parton variables s
�

, the C.M. energy squared, and t
�

, the four-

dimensional momentum transfer = 3 1 3 1( ) ( )p p p p µ
µ− ⋅ − .  The variable u

�
 is defined such that 

0=++ uts
�

�
�

, ignoring the small masses of the partons. The point like cross section we use has 

an overall factor which contains the coupling constants at the 2 vertices in Fig. 3.4 called out 

explicitly as well as the general point like energy dependence. 

                             ŝ/|A|)(~ˆ 2
21ααπσ                                                    3.10 

The remaining factors depend on the specific process and are given in Table 3.1. These 

entries are all numbers of order unity at large scattering angles, ̂ / 2θ π= . The 1/t2 behavior, t ~ 

q2, expected in Rutherford scattering is also in evidence. Therefore, the expression for a general 

( )
1 2

0

ˆ( ) ( ) (1 2 3 4)

ˆ/ ( ) ( ) (1 2 3 4)

A B

A B

y

d Cf x f x d dyd

d d dy Cf f d

σ τ σ

σ τ τ τ σ
=

= + → +

= + → +
3.9 
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point like cross section given in Eq.3.10 is a useful first approximation to the cross section. We 

will adopt it in making our back of the envelope calculations. These estimates should be made as 

a “reality check” before jumping into the COMPHEP program. 

 
Table 3.1: Point-like cross sections for parton - parton scattering. The entries have the generic dependence of 
Eq.3.10 already factored out.   At large transverse momenta, or scattering angles near 90 degrees (y ~ 0), the 
remaining factors are dimensionless numbers of order one [ref. 4 – with permission]. 

 We define the luminosity, L, such that the luminosity times the cross section, σ, gives the 

observed interaction rate in reactions per second. As an example, the LHC has a design 

luminosity leading to a total inelastic interaction rate of ~ 1 GHz. Since the accelerator has radio 

frequency (r.f.) bunched beams crossing every 25 nsec, there are ~ 25 inelastic interactions 

contained in each bunch crossing. This leads to “pileup” in a detector since events within a 

bunch crossing cannot be temporally resolved. 
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HzL
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mb
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100~
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σ

 3.11 

As a quick “reality check”, we revisit the low transverse momentum jet rates. Because the 

process occurs at low mass and hence small x, the gluon- gluon cross section dominates. The 

probability to find a small PT jet, or “minijet”, in an LHC crossing is not small. We estimate in 

Eq.3.12 the cross section for producing gluon pairs above a mass Mo from Eq.3.9 and Eq.3.10.  

 
3 2 2

0

2 2 2 2

( / ) 2[ ( )] ( )( )

( ) ~ [ ( )] [ | | / ]

y

o s o

M d dMdy xg x C d s c

M M y xg x A M

σ σ

σ πα
= =

∆ > ∆

��
�

 3.12 

The differential cross section falls with mass as the third power. This power law behavior is 

characteristic of point like fundamental processes. We can use the gluon distribution 

normalization, the rapidity full width and the strong coupling constants to estimate the jet-jet 

cross section for masses > 10 GeV. For small x, [xg(x)] ~ 7/2. The rapidity width is ~ 10, while 

~ 0.1sα . Using, |A(g + g � g + g)|2 from Table 3.1, we find a cross section ~ 0.4 mb above a 

mass of 10 GeV.  

It is a gratifying “reality check” of Fig.3.6 with M/2 ~ PT – Appendix C, that the simple 

estimate of the cross section is a number of order 1 mb. We took C ~ 1 which means we ignored 

the color matching of the gluon from hadron A to that from hadron B. We are then assuming that 

any color mismatch can be radiated away by very soft gluons with probability ~ 1 which does 

not alter the reaction rate.  

3.5 2�1 Drell-Yan processes 

We are now going to look at resonant formation of a single particle in the final state. For 

historical reasons this is called “Drell-Yan” production. We first recall that in quantum 

mechanics a resonance describes an unstable state with a mass, M, and a distribution, the Breit-

Wigner distribution, of masses having a finite width, Γ. The decaying state then has a finite 

lifetime τ ~ � /Γ. The cross section for producing a state of spin J is limited by unitarity, 
2ˆ 4 (2 1)dB Jσ π< +� , where the deBroglie wavelength, dB� , is related to the C.M. momentum, 

*P , and hence the mass M, *~ / ~ 2 /dB P M� � � .  

We will assume that the width is small with respect to the mass, and then integrate the 

C.M. energy over a mass range roughly equal to the width of the resonance. In this way, we 

integrate Eq.3.9 over the final state mass to find the cross section for resonance production as a 

function of rapidity. The partial width for formation of the state in the reaction 1 + 2 is defined to 

be 12Γ . 
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( )

2
12

2 2
120

( ) (2 1)( / )

/ ( ) ( ) (2 1) /A B

y x

ds J M

M d dy C xf x xf x J M
τ

σ π

σ π
= =

= + Γ

   = Γ +   
∫ � �

 

In order to obtain a rough estimate of the cross section we note in the absence of any 

dynamics the ratio of the resonant width to the mass is defined by the strength of the relevant 

coupling constant, 12α . The cross section on the plateau times the square of the mass also 

“scales”. It is a function only of the dimensionless variable τ. This predicted behavior has been 

observed in, for example, the production of W and Z bosons at different C.M. energies.  As a 

rough estimate we expect the cross section to be 2
12

3
1212 /~/~ MM ασ Γ . 

 

12 12/ ~ " "M αΓ  

Let us look at the kinematic correlation between the two partons in the initial state. A 

simple Monte Carlo program has been written which picks x1 from xg(x) and x2 out of xg(x), 

weighting by the dynamics, ~ 1/M
2 (see Eq.3.13).  The final state mass is fixed at 200 GeV and 

the C.M. energy is 2 TeV. The scatter plot of the accepted x values is shown in Fig. 3.12. There 

is a kinematic boundary, where <x> ~ 0.1, which is the y = 0 value occurring when x1 = x2. 

Because we produce a fixed mass the kinematic boundary, 2
1 2 / 0.01x x M s= = , is quite sharp.  

The minimum value of the momentum fraction of one parton occurs when the other parton has 

an x value of 1, 2
min /x M sτ= = .  In this case the minimum value is x = 0.01. 

 
Figure 3.12: Scatter plot of the momentum fraction of the gluons in a proton – (anti)proton collision.  The produced 
mass is fixed at 200 GeV and the overall C.M. energy is 2 TeV. 

3.13 

3.14 
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Now let us look at the production of single W and Z gauge bosons as a function of the 

available C. M. energy.  The W and Z couple to the u and d quarks in the proton, since the gluon 

has no flavor or weak charge. Therefore, the production mechanism arises from quarks and anti-

quarks in the initial state. There is no sharp “threshold” energy for W production because the 

quarks have a wide distribution of momenta within the proton.  We can think of the proton as a 

beam of quarks and gluons with a broad momentum range. 

The COMPHEP Feynman diagrams for these production processes 

 are shown in Figure 3.13. The W and Z are formed in the reactions 

, eu u Z e e u d W e ν+ − − −+ → → + + → → + .  Incidentally, COMPHEP does not allow single 

particles in the final state, which is why we chose a particular W and Z decay mode. We will use 

here, and later, the up quarks alone as a rough first estimate of the cross section, because 

electromagnetic cross sections go as the square of the quark charges. Thus the up dominates over 

down quarks in the cross section sum by a factor of 4. The student should try different quark – 

antiquark pairs in the initial state in COMPHEP for Z production to verify this assertion. In 

principle we should use COMPHEP for each possible initial state and add the results 

incoherently. 

 

 
Figure 3.13: Feynman diagrams given in COMPHEP for the production of W and Z gauge bosons. In COMPHEP 
upper case indicates an antiparticle (see Appendix B). The initial state contains a quark-antiquark pair, while the 
final state has a lepton and an anti-lepton. The coupling of quarks and leptons to gauge bosons are familiar from the 
discussion in Chapter 1 and Appendix A. 

At a fixed resonant mass, M, we expect that there is a rapid rise of the cross section with 

increase in the C.M. energy due to the rapid increase in the quark distribution functions with a 

decrease in the average x value of the distribution functions, <x> ~ M/√s. The COMPHEP 

results are shown in Fig. 3.14. The cross section is substantial, σW ~ 30 nb (we used 

( ) ~ 1/ 9eB W e ν− −→ +  - see Chapter 4) at the LHC. The “absolute” threshold, when both 

partons have x ~ 1, GeVMs W 80== , is very suppressed because the source distributions 

vanish there.  
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Figure 3.14: COMPHEP results for the cross section times electron branching ratio in the production of W and Z 
gauge bosons as a function of the proton – proton C.M. energy for the fundamental processes shown in Fig. 3.13. 

The cross section rises by a factor of ten going from the Fermilab Tevatron to the LHC. 

Even at the LHC the W cross section is only one part in 3 million of the total inelastic cross 

section. Clearly there is a premium on efficient and incisive triggering of the detector prior to 

storage of a candidate event to permanent media.  

In Appendix A, we showed how the coupling of the Z boson to fermions depended on the 

Weinberg angle. We also commented that this angle was experimentally determined from data 

taken in “neutral current” or Z mediated neutrino interactions. The possibility also exists to 

determine this angle from examining Drell-Yan production of lepton pairs at proton-antiproton 

colliders such as the Tevatron. In this way, the W mass and the top mass and the Weinberg angle 

can all be measured in a single experiment, thus reducing possible systematic effects which 

might arise in combining data taken by different experiments at different accelerators.   

The forward-backward angular asymmetry in quark – antiquark annihilations to electron-

positron pairs is shown in Fig. 3.15. The student can easily check these results using COMPHEP. 

( )

( )

W

Z

B W e

B Z e e

σ ν
σ + −

→

→
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Figure 3.15: Decay angular asymmetry in quark – antiquark annihilations. Interference effects arise because there 
are two amplitudes with different phases, one with an intermediate photon and one with a Z boson [ref. 5 – with 
permission]. 

To date the Tevatron luminosity has been insufficient to acquire enough Z events to make a 

precise measurement of the Weinberg angle. In future Tevatron data taking the expected 

statistics will be sufficient. Present data from CDF on the asymmetry is shown in Fig. 3.16. The 

large value of the asymmetry at the Z mass is due to the different V-A coupling of the L and R 

quark components to the Z, as discussed in Appendix A. The possible existence of new higher 

mass Z bosons not present in the SM might be seen in the appearance of a similar structure in the 

asymmetry at high mass. 

 
Figure 3.16: CDF data on the angular asymmetry in Drell-Yan production of electron-positron pairs as a function of 
the mass of the pairs. The variation of the asymmetry near the Z mass is determined by the value of the Weinberg 
angle [ref. 6 – with permission]. 

There are other processes leading to the production of a single resonant state. The charmed 

quarks introduced in Chapter 1 can form charm – anticharm bound states before the charmed 
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quarks decay. These states are called charmonium and an example was shown in Chapter 2 

where a charmonium resonance was used in calibrating muon detectors. These resonances have 

extremely narrow natural widths because they decay by multiple gluon emission, rather like the 

slow multi-photon decays of ortho and para positronium, which is the electron – positron bound 

state.  

The charmonium states are readily formed in p – p collisions using the gluons contained in 

the protons. These states are usually detected using their two-lepton decay modes since leptons 

are rare and thus are easily triggered on. Data are shown in Fig. 3.17 on the transverse 

momentum of the produced charmonium states. 

 
Figure 3.17: Transverse momentum distribution for the production of charmonium states at the UA1 (CERN) and 
CDF (Tevatron) experiments [ref. 7 – with permission].  

The scale set by the transverse momentum distribution of the charmonium system is only a 

few GeV. As we already argued, the initial state has a very limited transverse momentum set by 

the characteristic QCD energy scale. The data shown above serve to validate the assumption that 

the transverse momentum of the initial state is small.  

At higher order in the coupling constants this simple picture becomes more complex. The 

process called “initial state radiation”, see Fig. 3.18, where a gluon radiates a gluon prior to the 

charmonium, Ψ, formation also gives transverse momentum to the charmonium in the final state.  

Finite values of PT arise from both initial state radiation and the intrinsic parton transverse 

momentum.  
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Figure 3.18: Schematic representation of the gluon -- gluon formation of charmonium. The emission of an additional 
gluon leads to a small transverse momentum for the recoiling charmonium.   

Let us try to roughly estimate the cross section that we observe in Figure 3.14 and 3.17. 

The parton level cross section has previously been quoted in Equation 3.16. We estimate a W 

cross section  = σ
�

 ~ π2Γ(2J+1)/M3, using a “generic” width ~ 2 GeV ( ~ αWM), and obtain σ̂  = 

47 nb. This is in good agreement with the full COMPHEP calculation, Fig.3.14. For 

charmonium, whose width is only 0.000087 GeV, with a mass of 3.1 GeV, we similarly estimate 

the cross section σ̂  to be 34 nb, which is also in rough agreement with the data, Fig.3.17. The 

formulae given in this chapter for Drell-Yan production are therefore validated as a useful first 

approximation. Note that COMPHEP is incapable of handling charmonium because it only 

calculates fundamental processes. 

We can expand the discussion to look at the production of pairs of particles. In Fig. 3.19 we 

show the cross section for the production of Z boson pairs as a function of the C.M. energy. The 

COMPHEP results show a steep rise with C.M. energy. 

 

g 

g g 

ψψψψ 
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Figure 3.19: COMPHEP results for the production of a pair of Z gauge bosons in proton -- proton collisions as a 
function of C.M. energy for u quark annihilation in the initial state. 

There is a twenty-fold rise in cross section from the Tevatron to the LHC.  Nevertheless, 

the cross section for ZZ is still only ~ 2 pb at the LHC. Therefore, a high luminosity is necessary 

even at the high C.M. energy available at the LHC if we wish to study gauge boson pairs with 

high statistics.  

The COMPHEP Feynman diagram for the production of Z gauge pairs with a u u+ initial 

state is shown in Figure 3.20. As stated previously, we assume the dominance of u quark 

annihilation due to the larger charge coupling. 

 
Figure 3.20: COMPHEP Feynman diagram for the production of Z gauge bosons pairs in quark – antiquark 
annihilation.  

This Feynman diagram would seem to imply a larger cross section for Z pair production in 

proton -antiproton interactions rather than in p-p interactions since in the former case there are 

valence anti-quarks available. However, this is only true if the typical x value of the distribution 

functions is large, favoring valence partons. For example, at a C.M. hadron - hadron energy of 

0.4 TeV, the average x is, sMx Z /2~>< or ~ 0.46 where the partons are dominated by 

valence sources. A COMPHEP comparison of Z pair production in proton - proton and proton 

antiproton interactions as a function of C.M. energy is shown in Fig. 3.21. 

( )ZZσ
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Figure 3.21; Cross section for the production of Z pairs as a function of C.M. energy for proton-proton (o) and 
proton-antiproton (*) colliding beams of hadrons. 

There is a large difference in cross section at low C.M. energies (high x values where 

valence partons dominate), which decreases as the C.M. energy increases. At LHC energies we 

expect a factor of less than two difference, which is more than compensated for by the ability to 

produce high luminosity beams in the p-p case. Basically, if we are in the “sea” a proton is as 

good as an anti-proton for the production of new particles. 

Gauge pairs will be discussed further in Chapter 5 in the context of the search for the Higgs 

boson. The gauge bosons are predicted to have both triplet and quartic self-couplings (see 

Appendix A). Therefore, we also expect the production of three gauge bosons.  The COMPHEP 

Feynman diagrams appropriate to the production of three gauge bosons, W+W+Z, in u quark 

annihilations are shown in Fig.3.22. 

 

 
Figure 3.22: COMPHEP Feynman diagrams for the production of three gauge bosons, W+W+Z. 
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The diagrams contain vertices with both triple and quartic couplings. Clearly, it is 

important to explore the production of both gauge boson pairs and three gauge bosons in order to 

understand if the couplings are measured to be what the Standard Model predicts. This study will 

be an active part of the LHC research program. At present, the achieved luminosities at the 

Tevatron have not been sufficient to study gauge boson pairs in any detail. 

3.6  2� 2 decay kinematics - “back to back” 

 We now turn explicitly to the production of two particles in the final state. This is the 

general case of “two to two” scattering. The generic results are shown in equation 3.15.  On the 

rapidity plateau, y ~ 0, we again expect a scaling distribution; the cross section for two body 

scattering depends on a single variable, τ. 

 

( ) ( )3

0

1 2

4 2
0 1 2

ˆ ˆ/ 2 ( ) ( )

ˆ ˆ/

( / ) ~ [ ( ) ( )] ( )
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y x
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y x

M d dydM C xf x xf x d s

d s

M d dydM C xf x xf x

τ

τ

σ σ

σ πα α
σ πα α

= =

= =

 =  
≈  3.15 

In Figure 3.23 data taken by D0 on the production of inclusive jets and prompt photons at 

two different energies is compared to the scaling expectation. The single jet variable used is 

sMsPx TT /~/2=  which is approximately the scaling variable, τ . Indeed, the data is 

roughly only a function of that single scaling variable, thus confirming the prediction.  However, 

exact scaling cannot be true due to the evolution of the source distribution functions with 

changes in mass scale Q ~ M. Therefore, the Tevatron data on jets and photons serves, in its fine 

details, as a confirmation of the expectation of scaling behavior, modified by corrections due to 

evolution, which amount to factors ~ 1.5 -1.7. 
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Figure 3.23: dydPdP TT /3 σ , the scaling cross section, is compared as a function of the  

sMsPx TT /~/2=  variable at low xT  for a) inclusive jets [ref. 8 – with permission] and  b) inclusive 
photons [ref. 9 – with permission]  at the Tevatron in the D0 experiment. 

We expect 1/M
3
 behavior of the cross section as a function of mass, dMd /σ , at low mass 

where the parton distribution functions have a slow variation with x. This behavior is a reflection 

of the power law two body behavior of the generic parton – parton scattering cross section. 

When M/√s becomes substantial, the source effects will become large. As a numerical example, 

for M = 400 GeV, at the Tevatron, M/√s = 0.2, and the factor  (1-M/√s)
12, approximating the 

product of the two gluon distributions , is ~ 0.07. We want to see if we can estimate the falloff of 
3 /M d dMσ accurately because this quantity reflects the distribution functions. 

In Fig. 3.24 we show COMPHEP Monte Carlo model predictions for the distributions of jet 

– jet mass at a center of mass energy of 2 TeV. We have already removed the expected behavior 

of the parton – parton cross section by multiplying the cross section by the cube of the mass – 

a) 

b) 



 

  101 
  

Eq.3.16. Note that the COMPHEP prediction is roughly constant for M < 200 GeV. The line 

shown indicates the approximate effect of the source distribution x dependence, 12)/1( sM− , 

which is seen to be a roughly adequate approximation to the full COMPHEP calculation. 
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Figure 3.24: COMPHEP results, o , for gluon -- gluon two body scattering at 2 TeV C.M. energy in p-p interactions.  
The line indicates the approximate effect of gluon source distributions, as explained in the text. 

In Figure 3.25 we show Monte Carlo COMPHEP predictions for the distribution of jet 

transverse energy and jet - jet mass at 2 TeV C.M. energy, with jet rapidity less than 2. As 

mentioned above, we have the approximate kinematic relationship, PT ~ M/2, for large scattering 

angles. Thus the value of the cross section at a given mass is ~ the value at a transverse energy 

one half that value, as indicated by the scale chosen in the two figures. As before, we observe an 

approximate [1/M
3][1-M/√s]

12 behavior of the mass distribution. 
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Figure 3.25: COMPHEP results for two body gluon -- gluon scattering at 2 TeV C.M. energy in p – p collisions. 

a) gluon (jet) transverse momentum distribution                   b) gluon – gluon (jet-jet = dijet) mass distribution 

 

We can look at interactions other than simple strong production.  For example, we can look 

at the production of photons in proton – (anti)proton collisions. The basic COMPHEP Feynman 

diagrams for this process are shown in Figure 3.26. We must have a quark in the initial state 

because photons couple to the charge of the quark, while the gluons have no electric charge. We 

also want a gluon in the initial state, as it is the most probable parton at low x. 

 
Figure 3.26: COMPHEP Feynman diagrams for single photon production due to quark - gluon scattering. 

We can compare the value of the cross section at a given mass for this final state, shown in 

Fig. 3.27, to that for the two gluon (we assume a gluon can be experimentally observed as a jet 

and therefore use gluon and jet interchangeably) final state shown above. For example, at 300 

GeV mass the photon differential cross section is about 2 pb/GeV, while the jet - jet cross section 

is about 100 pb/GeV or about fifty times larger. We expect a similar shape for the mass 

distribution because all the point-like differential cross sections have similar behavior, see Table 

3.1. This similarity is at least qualitatively observed. 

dσ/dPT 

(pb/GeV) dσ/dM 

(pb/GeV) 
 

PT(GeV) M(GeV) 
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Figure 3.27: Mass distribution obtained by COMPHEP for the photon - quark final state in prompt photon 
production for  p – p collisions at 2 TeV C.M. energy. 

The rate for prompt photons is expected to be reduced with respect to the jet – jet rate by 

the ratio of the coupling constants (electromagnetic to strong) and by the differences in the u and 

g source functions. Those two factors are roughly α/αs ~ 14 and u/g ~ 6 at x ~ 0 (see Fig. 3.9) 

leading to a net factor of 64. Thus we can crudely understand the ratio of the cross sections. 

We now turn to the scattering and the detection of the two body final state. The kinematic 

details are explained in Appendix C.  Suffice it to say that using the measured values of the two 

final state jet kinematic quantities, rapidity, y3, y4 and ET allows us to solve for x, M, and the 

C.M. scattering angle θ
�

. Further, we can relate M, y3 and y4 to the initial state momentum 

fractions x1 and x2 thus completely specifying the kinematics for the two body process.  
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Data from CDF on the Drell- Yan production of lepton pairs at 2 TeV C.M. energy are 

shown below in Fig. 3.28.  The values of the initial state parton x values are also given in the 

figure. Note also the nice illustration of the rapidity plateau in this process. 

dσ/dM 

(pb/GeV) 
 

Mγu(GeV) 
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Figure 3.28: CDF data on the Drell-Yan production of electron – positron pairs with a mass ~ the Z mass. The two 
body final state variables are used to find the momentum fractions of the two partons in the initial state [ref. 10 – 
with permission]  

A simple Monte Carlo program was written to simulate two body gluon - gluon scattering 

at a fixed mass of 200 GeV at the Tevatron. Results of the model are shown in Figure 3.29.  We 

see that the x, x = x1 – x2, distribution for the composite state of mass M is sharply peaked 

around the value of zero. Values for x are limited to be ~ zero by the falloff of the parton 

distribution functions at large x. The plateau for the “decay” products exists and is limited to ∆y 

~ 3 at the Tevatron for this mass. This is a kinematic, not a dynamic, effect. 

  
Figure 3.29: Simple Monte Carlo results for two body gluon - gluon scattering at a mass of 200 GeV and a C.M.  
energy of 2 TeV. a) Distribution of the momentum fraction, x, of the produced state. b) Distribution of rapidity, y3, 
of one of the final states gluons. 

As another example of a two body decay angular distribution we look at the production of 

both a W boson and a photon. The COMPHEP Feynman diagrams for this process are shown in 
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Fig.3.30.  This is another specific example of the production of a pair of electroweak gauge 

bosons.  These processes depend on the triple coupling of gauge bosons, in this case the WWγ 
vertex. 

 
Figure 3.30: COMPHEP Feynman diagrams for the production of a pair of gauge bosons, a photon and a W boson. 

The angular distribution for the W plus photon production process at the parton level is 

shown in Fig. 3.31.  Note the strong forward - backward peaking of the angular distribution. This 

is due to the virtual exchange of the u and d quarks similar to that observed in Rutherford 

scattering with the exchange of a photon. In addition, the angular distribution has a zero. This 

very distinctive SM prediction could be confirmed with a large enough event sample. Such a 

sample is not yet available at the Tevatron, although the process itself has been detected. 

  
Figure 3.31: Distribution of the W angle with respect to the initial u quark generated by COMPHEP for the final 
state W boson produced in association with a photon.  

The scattering angle can be found using the measurements of the rapidities of the two 

partons in the final state, y3 and y4, as we show in Appendix C. The correlation between the 

rapidity of the final state particles in a simple Monte Carlo program with a fixed mass of 200 

GeV for 2 TeV C.M. energy p – p collisions is shown in Fig. 3.32 below. Note the boundary 

illustrating the kinematic limit at large rapidity. There is, in addition, a strong forward-backward 

peaking, as noted previously, so that y is large. In addition, the two body scattering correlation 

implies 43 ~ yy − .  

θσ cos/dd  
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Figure 3.32: Simple Monte Carlo results for the production of a gluon pair of mass 200 GeV at a C.M. energy of 2 
TeV in p – p collisions. The scatter plot shows the correlation between the rapidities of the two final state gluons.  

3.7 Jet Fragmentation 

We have now almost worked our way from left to right across the physical processes 

schematically shown in Fig. 3.4. So far we have said nothing about the distinction between 

partons and the detected particles, and the process shown in Fig. 3.4 cuts off with partons exiting 

the collision. For fundamental, approximately stable, final state particles like electrons, photons, 

and muons there is really no distinction as these particles themselves are detected. For the 

quarks, gluons, and neutrinos we really need to look at the jets and not the partons. We have thus 

far simply used quark and gluon interchangeably with jet. 

The Monte Carlo modeling of the parton to jet “fragmentation” is done in a series of 

complex programs which are available to researchers in this specialized area. For this text, 

COMPHEP evaluates the distribution functions, f(x), properly, and the Standard Model 

dynamics, but not the fragmentation. We can also write our own simple Monte Carlo programs 

to crudely simulate the fragmentation of quarks/gluons into jets, and this has been done for the 

purposes of this text. In general, we will not focus on these experimental details here but will 

rather stick to the fundamental physics. Interested readers can find and execute PYTHIA, 

HERWIG, ISAJET, or some other of these complex computer codes. For example PYTHIA, a 

very popular program in high energy physics circles, is described in ref. 11. 
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Some experimental data on fragmentation from both electron – positron annihilations and p 

– (anti)p collisions is shown in Fig. 3.33. For the pion fragments of jets there is shown a 

distribution in the momentum fraction, z, of the parent momentum P taken off by the pion of 

momentum k. It is roughly independent of the energy of the parent for z > 0.1 and falls rapidly 

with increasing z.  In addition, the multiplicity of charged fragments grows, on average, as the 

logarithm of the C.M. energy. 

 
Figure 3.33: Fragmentation of a jet in electron – positron annihilations into an ensemble of final state hadrons. a) 
Momentum fraction of the produced pions with respect to the initial electron momentum. b) Multiplicity of charged 
hadrons as a function of the energy of the eppppee ,)(, −−+ initial states [ref.3 – with permission].  

The fragmentation of quarks and gluons has already been introduced in Chapter 2. 

Fragmentation properties are assumed to “factorize” so that the way in which a parent quark or 

gluon fragments is independent of the mechanism by which the parent is created. Therefore we 

need only a single unified description of the fragmentation or “hadronization” process. 

We assume for simplicity that all fragments are pions. We also assume that the transverse 

momentum acquired in the fragmentation process is limited with the fragment momentum 

transverse to the parent jet axis, kT  , limited to a value ~ ΛQCD. The fragmentation function, D(z), 

describes the distribution in z = k/P of those products where z is the momentum fraction of the 

parent, momentum P, carried off by the fragment, momentum k, zmin < z < 1,  zmin = mπ/P. It has 

a “radiative form” similar to that already assumed for the parton distribution functions. This 

assumed form leads to a jet multiplicity, n, which is logarithmic in P in agreement with the data 

shown in Fig.3.33. 



 

  108 
  

 ∫ ∫=><

−=
1

/

)/ln(~/~)(

)1()(

Pm

mPazdzadzzDn

zazzD

π

α

 3.17 

The fragmentation process implies that we observe a “jet” of particles, which move 

approximately along the direction of the parent quark or gluon.  We expect a “core” within the 

jet and which is localized at small cone radius, R, in (η,φ) space with respect to the jet axis that 

carries most of the momentum. The core is surrounded at larger R by many low energy particles. 

Data from CDF on the jet charged multiplicity is shown in Fig. 3.34 as a function of the 

mass of the jet-jet (or dijet) system. Note the expected logarithmic dependence of the mean 

charged particle multiplicity on the dijet mass. The existence of a sharply peaked distribution of 

particles about the jet axis is also very evident because data is presented for different “cone” half 

angles. 

 
Figure 3.34: CDF data on the mean multiplicity of charged particles within a jet as a function of the mass of the jet-
jet system. Note the semi-logarithmic scale. Data for different cone sizes about the jet axis are shown [ref. 12 – with 
permission]. 

More detailed information on the energy flow within a jet as a function of the cone radius R 

with respect to the jet axis is shown in Fig. 3.35. As we can see, 40% of the energy of the jet is 

contained in a cone of radius R = 0.1 (Chapter 2 defines R as the radius in pseudorapidity – 

azimuthal angle space, 22 φη ∆+∆=R ), while 80% is contained in a cone with radius R = 0.4.  

This data can be compared to that derived from a simple Monte Carlo program which was 

written to model jet fragmentation. In the model a series of massless fragments is picked out of a 

simple D(z) distribution and they are then assigned a transverse momentum from a distribution 
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similar to that shown in Fig. 3.5.  This particular model uses zD(z) ~ (1-z)5  and <kT> ~ 0.72 

GeV. The “leading fragment” is expected in this model to have <zmax> ~ 0.23. Hence, on average 

the highest energy pion in a jet takes ~ 1/4 of the jet momentum in this model.  Results are 

shown in Fig. 3.36. 

R  
Figure 3.35: CDF data on the distribution of the charged energy fraction of a jet of 100 GeV transverse energy as a 
function of a radius of the cone, R, surrounding the jet axis [ref. 7 – with permission]. 

 
Figure 3.36: Simple Monte Carlo model corresponding to the data shown in Fig. 3.35 for comparison.  The energy 
fraction of the jet fragments found within a cone of variable radius R centered on the jet axis is plotted vs. R. 

We must resort to experimental data because fragmentation is soft and thus non-

perturbative, as was the case for the distribution functions of partons found in the proton. 
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Clearly, the simple model and the data are in some rough agreement. However, a serious 

comparison with data requires a much more sophisticated treatment including final state parton 

showers and final state gluon radiation. We will, in general, evade these complications and 

assume that an understanding of the physics of the processes is of more interest than a detailed, 

but purely phenomenological treatment of fragmentation. 

Now we are armed with the ability to first estimate and then calculate all processes that 

exist in the Standard Model using simple formulae and then COMPHEP. We will apply our tools 

in Chapter 4 to data taken at the Tevatron. This data presently defines the “state of the art” for 

physics results in proton – (anti)proton collisions. What is of crucial importance is that the 

student has the necessary tools.  She can then duplicate most of the material given in this text. 



 

  111 
  

Exercises 
 
1. Use Eq.C.2 to show that )/(sinh 22

||
1 MPPy T += − . 

2. Show that y is additive under Lorentz transformation. 

3. Show that y is approximated by pseudorapidity for zero mass particles. 

4. Use the result of exercise 1 to derive Eq.3.1. 

5. Run COMPHEP for g + g -> g + g at 2 TeV. Plot the rapidity and transverse momentum 
distributions and compare to Fig. 3.2 and Fig. 3.3. 

6. Work out the derivation of Eq.3.4 in detail. 

7.  Show that the “Cerenkov” relationship, θω cosk= , follows from energy-momentum 
conservation. 

8. For b quark pair production at the LHC, estimate [xg(x)] using Eq.3.7. 

9. Derive Eq.3.8 in detail. 

10. Show that the Jacobean is as stated, dyddxdx τ=21 . 

11. Assuming that the decay width of the cη  charmonium state is 13 MeV find the Drell – Yan 
cross section for M ~ 3 GeV, J = 0. 

12. Establish the relationship between the initial state x values and the final state two body 
rapidities given in Eq.3.17 (see Appendix C first). 

13. For a pion mass of 0.14 GeV, estimate the mean multiplicity of pions at a  C.M. energy of 1 
TeV for a ~ 3 in Eq.3.18 

14. What is the average emission angle of the leading jet fragment for a 100 GeV jet? 

15. Use COMPHEP to study g + g -> g + g at 100 GeV C.M. energy. Is the result stable? If 
not, why? Try a cut on the final gluon transverse momenta of > 10 GeV. Is this more 
stable? (see Appendix B) 

16. Use COMPHEP to compare Zuu →+  and Zdd →+  at the same C.M. energy. Can you 
explain the ratio of the cross section? 

17. Use COMPHEP to study radiated photons. Consider the process of electron positron elastic 
scattering with a radiated photon at C.M. energy of 100 GeV. Look at the energy of the 
photon and the angle with respect to the incident electron. Are the photons soft and 
collinear? 

18. Use COMPHEP to study the angular distribution in u,U->e1,E1. Look at the cosine of the 
angle between particle 1 and 3 ( u quark and electron ) at 50, 90, and 150 GeV. How does 
the asymmetry change with C.M. energy?    
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19. Do the same for proton – anti-proton scattering as for partons in Exercise 19. Compare to 
the Monte Carlo results presented in the text. 
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4. Tevatron Physics 

“True science teaches, above all, to doubt, and to be ignorant” – Miguel de Unamuno 

“Rules and Models destroy genius and art” – William Hazlitt 

We have now obtained the tools we need to examine the production of SM particles in p – 

(anti)p collisions. In this Chapter, our aim is to see where the frontier of this knowledge presently 

is, in the middle of 2003. The Tevatron accelerator complex operated at the Fermi National 

Accelerator Laboratory (Fermilab or FNAL) has the highest available C.M. energy of 1.8 TeV. 

Subsequently, the energy has been raised to 1.96 TeV. There are two general purpose 

experiments taking data at Fermilab, CDF and D0. Some data taken by these experiments has 

already been shown in previous Chapters.  We will examine more of the published data. It will 

define, for high transverse momentum processes, what we now know and how we know it. 

The statistical power of this data will be improved because CDF and D0 resumed data 

taking in 2001. The rate increase should allow studies of gauge boson pairs and searches for low 

mass Higgs particles at the Tevatron. In 2007 the Large Hadron Collider (LHC) operated at the 

European high energy facilities at CERN will begin operations at a C.M. energy of 14 TeV.  

4.1 QCD - Jets and Dijets 

One of the processes with the largest cross-section is jet production because it is a strong 

interaction process and because the gluons are the dominant parton in the proton at low x values. 

The simplest measurement is the distribution of transverse energy for any produced jet or 

“inclusive jet” ET . A jet is defined experimentally as localized energy in a cone of radius R, with 

R ~ 0.5. Data from D0 for this process is shown in Figure 4.1. Note the rapid falloff with 

increasing transverse momentum.  Clearly, the QCD theory works well and fits the data over 

many orders of magnitude. 
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 a)      b) 

Figure 4.1 Jet production at the Tevatron in D0 [ref. 1 – with permission]. a) distribution of the transverse 
momentum of a single jet. b) limits on the energy scale for quark “compositeness”. 

The data extend out to a substantial fraction of the kinematic limit which occurs when the 

dijet mass M s= , / 2 ~ 900TE s GeV= . Historically, particle scattering at wide angles has 

led to the discovery of substructure.  The most well known example is in Rutherford scattering, 

where the existence of large angle scattering events led to the hypothesis of an atomic structure 

with widely distributed electrons and the very localized nucleus as a substructure. More recently, 

wide-angle scatters of leptons from protons have shown that there are point like quarks and 

gluons (“partons”) within the extended proton.  

In a similar fashion, we now look for wide angle (S wave - isotropic) scattering, which 

would be an indication of composite substructure of the quarks or gluons themselves. The 

present limits on a mass scale for such substructure are approximately 2 TeV, Fig. 4.1. The 

magnitude of the limit is set by the largest accessible transverse momentum, which, in turn, is a 

function of the available luminosity and energy. Therefore, we expect that the limits on a 

possible composite mass scale will increase rapidly when the LHC begins operation due both to 

increased C.M. energy and increased luminosity. 

The next most complicated jet measurement concerns the correlation between two jets in 

the final state. Data from CDF are shown in Figure 4.2.  The transverse momentum distribution 

of 1 jet is shown as a function of the pseudorapidity of the second jet found in the event. 



 

  116 
  

 
 

Figure 4.2: Distribution of the transverse energy of a jet as a function of the pseudorapidity of the second jet in dijet 
events from CDF [ref. 2 – with permission]. 

Clearly, as |η3 - η4| increases M34 increases (see Chapter 3) and the cross section decreases 

at least as rapidly as a power of the mass. As we can see, QCD also describes the dijet data very 

well over a wide range of cross section values. 

Next we look at the mass distribution of the dijets.  Data from the D0 experiment is shown 

in Figure 4.3. We expect that the distribution falls with a  1/M
3  behavior due to the underlying 

point like parton scattering and contains a second factor ~ (1- M/√s)
12 due to the gluon initial 

state distribution functions. As with the transverse momentum distribution, we can look for 

anomalous production of high mass dijets as possible evidence for quark or gluon compositeness. 

However, as seen in Fig. 4.3, QCD appears to explain the data well out to jet – jet masses of ~ 

0.8 TeV. 



 

  117 
  

 
Figure 4.3: Distribution of the mass of dijets from D0 for jets produced at low rapidities [ref. 3 – with permission]. 

The limit that we can place on the resonant production of possible excited quarks is shown 

in Figure 4.4. A schematic representation of the process of producing excited quark states 

indicates that quarks and gluons would form a resonant state at the mass of the excited quark 

similar to the Drell-Yan mechanism we studied in Chapter3. The absence of such resonant 

structure in the mass distribution allows D0 to set a limit on the mass of such states of 725 GeV 

and above. Up to this mass the quarks act like fundamental point like particles containing no 

internal states that can be excited. 

 
Figure 4.4: The cross-section for the production of excited quarks as a function of the mass of the excited quark. The 
lack of resonant structure in the mass distribution, Fig. 4.3, leads to a limit on the mass of the excited quark of > 725 
GeV which is the mass where the cross section limit equals the production cross section for excited quarks [ref. 3 – 
with permission] 

 

q 
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The dijet angular distribution has also been published. Data from the D0 experiment is 

shown in Figure 4.5 for different dijet mass intervals. 

 
Figure 4.5: Distribution of the scattering angle variable χ for different values of the jet – jet invariant mass obtained 
by the D0 experiment. The curves represent the predictions of QCD perturbation theory  [ref. 2 – with permission] . 

If gluon exchange describes the dynamics of jet – jet production (see Chapter 3 for the g – 

g Feynman diagrams), then the distribution of the variable χ, where )cos1/()cos1( θθχ
��

−+= , 

is flat, / ~d dσ χ�

 constant, as it is in the familiar case of Rutherford scattering. Recall that the 

scattering angle can be determined from measurements of the transverse momentum and the 

rapidity of the two jets in the final state. The variable t̂  is the square of the parton momentum 

transfer, which in the reaction 1 + 2 -> 3 + 4 is, 2
1 3 1 3( ) ( ) 2 (1 cos )p p p p pµ

µ θ− ⋅ − = − −
�

�

 for 

massless partons. The exchange propagator behavior of the differential cross section is removed 

by the change of variable, t̂ χ→ . 

                                                               2/ ~ 1/d dt tχ
� �

 4.1 

The results for small angles are particularly simple, 2 2 2ˆ ˆˆ ˆ4 / , ( ) , (2 ) /t p p tχ θ θ χ→ → →
� �

. 

We expect that point like scattering describes the fundamental 2 -> 2 process.  Therefore, we 

expect that the χ distribution is uniform. There are small higher order corrections to the 

distributions that are evident in Fig. 4.5 and which are calculable. Since there are no deviations 

in Fig. 4.5 from the QCD theoretical distributions at large scattering angles, we conclude that 

there is no evidence for the existence of composite quarks at this time. 
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4.2 ααααs Determination 

In quantum field theory the coupling “constants” of the three SM forces that appear in the 

Lagrangian have “effective” values, which are functions of the mass scale at which they are 

examined. This effect is due to quantum corrections caused by higher order diagrams as 

discussed in some detail in Appendix D. We can use existing jet data to validate the QCD 

prediction for the change of sα with the mass scale Q. 

In QCD the gluons mutually interact because they, themselves, carry “color”. This is 

illustrated very schematically in Fig. 4.6. Roughly speaking, the ratio of 3 jets to 2 jets in the 

final state is given by the strength of the strong coupling constant (see Fig.4.6). That ratio can 

then be studied experimentally as a function of the mass scale of the jet events. In that way we 

can measure experimentally how the coupling constants “run” with mass scale. 

 
Figure 4.6: Schematic representation of the scattering due to the mutual interaction of 
gluons, ,g g g g g g g+ → + + + . Note the triple gluon fundamental vertex that exists in QCD. 

The mutual self-coupling of gluons leads to the conclusion that the strong coupling strength 

actually decreases as the mass increases, opposite to the behavior of electromagnetic charge. The 

anti-screening effect of the colored gluons overcomes the screening effects of the colored quarks. 

On the other hand the coupling becomes very strong at large distance scales. For QCD we define 

an energy scale QCDΛ  where the interactions become strong, 0)(/1 2 =ΛQCDsα . At high energies 

the coupling becomes weak, 2( ) 0s Qα → ∞ → .  

 2 2 2( ) [12 /(33 2 )] / ln( / )]s f QCDQ n Qα π= − Λ  4.2 

In Eq.4.2 nf is the number of fermion generations that are “active”, or have a mass below 

Q, at the mass scale Q. For example, we give numerical values at a few mass scales. We take the 

QCD mass scale to be, fmGeVQCD 1~2.0~Λ . At the Z mass, the strong interactions are 

appreciably weaker than at the ~ GeV mass scale. 
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Experimental data on the strong coupling constant as a function of mass scale are shown in 

Fig. 4.7. Note the rapid falloff from the 0.2 GeV scale where the strong interactions are strong. 

 
Figure 4.7: Strong coupling constant as a function of the mass scale Q. The data decrease with increasing mass [ref. 
4 – with permission]. 

A collection of precision measurements of the strong coupling constant extrapolated to the 

Z mass is given in Figure 4.8. Many of these measurements come from data on the production of 

jets, either at proton – (anti)proton colliders or at electron - positron colliders. The data appear to 

have converged to a value for the strong coupling constant of roughly 0.12 at the Z mass.  

 

Q 

2( )s Qα



 

  121 
  

 

Tevatron

 
Figure 4.8: Precision measurements of the strong coupling constant evaluated at the Z mass. Data comes from 
measurements of lepton – p scattering, electron - positron production of jets, and proton – (anti)proton jet production 
as well as other reactions [ref. 5 – with permission]. 

4.3 Prompt Photons 

Now let us generalize slightly from gluon jets to the study of reactions with a single photon 

or two photons in the final state.  Data from CDF and the CERN experiment UA2 are shown in 

Figure 4.9. The distribution of transverse momentum of a final state photon is shown. The 

smaller value of the cross section with respect to jets limits the statistical power of the data, and 

hence the transverse momenta are limited to fairly low values. However, the data is in reasonably 

good agreement with the SM prediction except perhaps at very low transverse momentum. It 

may be true that an “intrinsic” parton transverse momentum of ~ 3 GeV is necessary to explain 

the data.  As we noted before, the quarks are bound in the proton, so that some transverse 

momentum ~ 0.2 GeV is expected. 
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Figure 4.9: Data on the transverse momentum distribution of , a), single photon and b), di - photon production [ref. 6 
– with permission] at CDF and UA2 (the UA1 and UA2 experiments were operated at a proton-antiproton collider 
located at CERN with collisions of 0.63 TeV energy in the C.M.). 

As already mentioned in Chapter 3, these are 2 � 2 processes with kinematic relationships 

similar to those found in jet production. The dynamics of the fundamental point like parton 

scattering are also similar. The cross section level is reduced with respect to gluon – gluon 

scattering by coupling strengths and initial state parton source factors. A schematic 

representation of the lowest order diagrams for single and double photon production is given in 

Figure 4.10.  Clearly, two-photon production in the Born approximation shown here is just 

another generic 2 -> 2 process. 

a) 

 

b) 
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 γ+→+ ugu  γγ +→+ uu  
 
 
 
Figure 4.10: Schematic representation of the Feynman diagrams in the Born approximation for the production of a), 
single photons and b),  di - photons. 

These data for single photons plus jets are used in jet balancing for the calibration of 

hadron calorimeters, as we mentioned in Chapter 2. It is easier to balance a photon – jet than a jet 

– jet event because precision electromagnetic calorimetry (see Chapter 2) can be used to 

accurately measure the photon and then predict the jet energy while jet energy measurements 

have intrinsic fluctuations (see Chapter 2).  

The two-photon process constitutes an important SM background in Higgs searches.  

Therefore, it is important to insure that we have a good understanding of this background so that 

we can extrapolate to the LHC. COMPHEP Monte Carlo predictions for the transverse 

momentum distribution of the photon are shown in Figure 4.11. New data from CDF and D0 at 

higher photon transverse momenta will be important in comparing to the Monte Carlo 

predictions. The COMPHEP program does not include higher level processes such as internal 

“loops” or “box” diagrams, which may be important in two-photon production. The COMPHEP 

user must be aware of the limitations of this program in comparing to real data.  

The data from CDF, Fig 4.9, are ~ an order of magnitude above the COMPHEP predictions 

at photon transverse momenta ~ 10 GeV, where CDF find a cross section ~ 20 pb/GeV. 

“Intrinsic” parton momentum is one mechanism that has been postulated in order to improve the 

agreement of the model with the data. More data is needed before a firm conclusion on the 

existence of “intrinsic” momenta of a ~ few GeV can be made. 
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Figure 4.11: COMPHEP results for the cross-section as a function of the transverse momentum of one of the 
photons in di - photon production in p – p collisions at 2 TeV C.M. energy. 

4.4 b Production at FNAL 

In this book, we will say little about the production of c and b quarks and their subsequent 

use in the study of the basic properties of weak decays of quarks. We are interested in physics at 

the energy frontier, which means we are concerned with the highest available mass scales. 

Indeed, there are many fine textbooks written solely about B physics. There are accelerators and 

associated detectors dedicated to B physics studies operating in Japan, at SLAC and at Cornell in 

the U.S. Clearly, this is a field of study which well deserves a volume by itself. 

Nevertheless, we briefly show here some Tevatron data on the production of states 

containing b quarks. We do this because many of the Higgs and new phenomena search 

strategies rely on the identification of hadrons containing b quarks in the final state. Therefore, 

the background processes must be well understood if an incisive search is to be made. In Figure 

4.12 we show the transverse momentum distribution of b quarks produced in the CDF and D0 

experiments.  The natural mass scale for the production is that of the quark mass itself.  Because 

the b mass is about 5 GeV, we expect that perturbative QCD should work properly, since 

QCDbm Λ>> which implies 1)( <<bs mα  (see Fig.4.7). 

dσ/dPTγ(pb/GeV) 

PTγ(GeV) 
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Figure 4.12: Data from CDF and D0 on the cross section for the production of b quarks as a function of the 
minimum transverse momentum of the b quark, PT

min.  The line is drawn to indicate the expected behavior of the 
cross-section [ref. 7 – with permission].  

The expected Rutherford like behavior for two body scattering is dσ/dPT ~ 1/PT
3
 so that 

2
minmin /1~)( TTT PPP >σ . This behavior roughly corresponds to the data at low transverse 

momenta where the effects of the falloff of the parton distribution functions with x are not 

expected to be important.  

In Figure 4.13 we show D0 data on the rapidity distribution of muons arising from the 

decays of B mesons. There is an evident rapidity “plateau” which extends to ymax ~ 2.5 as 

expected at this low mass, ~ 2mb scale. These data are in rough agreement for the shape of the 

rapidity distribution with the Monte Carlo predictions available to the researchers which are the 

curves shown in Fig. 4.12 and 4.13. However, the agreement is not good, which means that 

background calculations for new phenomena searches should also be assumed not to be terribly 

reliable.  

The CDF experiment has taken high quality data on the lifetimes of states containing b 

quarks.  As mentioned in Chapter 2, a silicon vertex tracker is used to find decay vertices and the 

production vertex. The decay distance and the momentum of the reconstructed B particle decay 

allow CDF to make precision lifetime measurements. The B particles are typically bound states 

of quarks and antiquarks, which contain b quarks.  
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Figure 4.13: Distribution of the rapidity of the muons from the decay, b -> c + µ + νµ, of the b quarks for two 
different minimum requirements on the muon transverse momentum [ref. 1 – with permission]. 

Prior to the advent of high quality silicon vertex tracking detectors, the study of B decays 

was hampered in p – (anti)p colliders by the many confusing background tracks that exist in the 

“underlying event”. Thus, silicon detectors were the enabling technology for p – (anti)p colliders 

in the study of the decays of heavy quarks. Data are shown from these analyses in Fig. 4.14. The 
o
bΛ  is a three quark bound state (bud) like the neutron (dud). 

 
Figure 4.14: Measurements of the lifetimes of B hadrons, or those colorless states containing b quarks from CDF 
[ref. 1 – with permission]. 
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Obviously, p-p collider experiments can make an impact on b physics research even though 

many competing B “factories” are operating at electron – positron colliders. The mean value for 

the lifetimes of all the states studied that contain a b quark is roughly 1.5 psec. The distance 

associated with that lifetime is about 450 µm, as quoted in Chapter 2. The exception shown in 

Figure 4.14 has to do with the bound state of a c quark and a b anti- quark, cB cb+ = .  Since 

either heavy quark can decay weakly, the lifetime is shorter than the lifetime of states containing 

only b quarks and light quarks. 

The mass scale for b quark production is 2mb~ 10 GeV, so the cross section is large at the 

LHC, ~ (0.1 – 1.0) mb, and the Tevatron. Therefore high statistics data can be obtained at hadron 

collider experiments as well as at e+e- machines such as Belle (Japan) and BaBar (SLAC). The 

large value of the b cross-section opens up the possibility of high statistics studies of b quarks 

and searches for rare b decays. In addition, all the states shown in Fig. 4.14 are produced 

simultaneously, which is not the case in electron positron colliders where the initial state C.M. 

energy is the same as the parton – parton C. M. energy since leptons are fundamental particles, 

while protons are not. 

In the SM all CP violation is due to a single complex phase in the quark mixing matrix 

'qq
V . A vigorous current area of research is to explore whether this SM assumption is found to be 

true in Nature. In Figure 4.15 we show a schematic representation of one of the unitarity 

relationships for the weak mixing matrix, qqV ′ , governing quarks decays which we defined in 

Appendix A.  Unitarity guarantees that the gauge coupling is of universal strength and implies 

that there are three and only three light generations of quarks and leptons. Initial results from 

BaBar and Belle indicate that the relationship shown in Fig. 4.15 is satisfied to the present 

experimental accuracy. Therefore, there is no indication as yet for additional CP violation effects 

due to, for example, SUSY (see also Chapter 6). Ever more precise data taken concerning B and 

K decays continue to refine the over constrained unitarity relations. 

 



 

  128 
  

 
Figure 4.15: Triangular relationship for the complex parameters making up one row of the quark mixing matrix 
unitarity conditions [ref. 8 – with permission]. 

4.5 t Production at Fermilab 

The top quark has a mass of 175 GeV, as determined by direct measurement at Fermilab.  

Because the mass is so high, top quark events have only been produced and studied at the 

Tevatron.  

Of all the quarks and leptons, only the top quark has kinematically allowed two body weak 

decays where a real W boson is produced rather than a virtual W. The decay is t -> W+ + b. 

Schematic diagrams for muon three body weak decays are shown in Fig. 4.16. At low mass 

scales, weak decays can be viewed as an effective four fermion interaction, characterized by the 

Fermi coupling constant, G, which can be determined by measuring the rate for muon decay, 

ee µµ ν ν− −→ + +  since the decay amplitude is proportional to G. Because the decay width goes 

as the square of the amplitude (Fermi’s Golden Rule) we expect 2~ GΓ . Since [G] = M-2 and [Γ] 

= M, there should be five powers of the muon mass to make the dimensionally correct estimate, 
2 5~ G mµΓ .  

At a more fundamental viewing (see Appendix A) muon decay can be thought of as the 

virtual emission of a W boson and a muon neutrino, with strength Wα  in the decay width, 

followed by a propagator at low momentum transfer contributing a factor 21/ WM  in the 

amplitude (see Eq.1.6), and ending with the subsequent virtual decay of the W into an electron 

and an electron anti- neutrino, contributing another factor of Wα  to the decay rate; 

( )eW eµ µµ ν ν ν− − −→ + → + + . The lifetime of the muon can again be estimated by 

dimensional arguments. It contains coupling factors due to the 2 weak vertices and the W 
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propagator, as we mentioned in Chapter 2.  However, this method gives a poor estimate because 

there is a large, dimensionless, purely numerical factor, 31/[192 ]π .  

 

 

 
 
 
 
 

 

 

Figure 4.16: Schematic representation of the decay of the muon. a) representation of the muon decay as an effective 
four fermion interaction described by the Fermi coupling constant G. b) The same decay viewed as the virtual 
emission of a W gauge boson followed by its virtual two body decay into a lepton pair.  

The correct expression for the muon lifetime is given in Eq.4.4, along with the expression 

derived using dimensional arguments. 

 
µµ

µµ

α

π

mMm

mG

WW
42

352

)/(~

192/=Γ
 4.4 

For the top quark, we have available a direct two body decay with a single weak vertex, 

t b W+→ + .  In fact, the decay width of the top quark is quite comparable to the width of the W 

boson itself that is also a direct two body decay. The decays occur so rapidly ( QCDt Λ>>Γ ) that 

no strong top-antitop bound states are formed as they are for c (charmonium) and b 

(bottomonium) quark-antiquark pairs. The expression for the top width, Eq.4.5, is first order in 

the Fermi constant G due to the single vertex in the decay amplitude. Thus, since 
2[ ] , [ ]M G M −Γ = = , we expect 3~t tGmΓ  or, alternatively, with 2~W WGMα . 

 
3

2

/8 2

~ [ /16]( / ) ~ 1.76

t t

W t W t

Gm

m M m GeV

π
α

Γ =
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Data from the D0 experiment on the spectroscopy of top quarks are shown in Figure 4.17. 

Each produced top in the top pair final state almost always decays into a W boson and a b quark. 

In turn, the W can decay into a charged lepton and a neutrino or a quark - antiquark pair. The D0 

data shown here uses the lepton + jets final state, t-->W + b, W-->J + J, l + ν, where one W 

decays into a lepton - neutrino while the other decays into a quark – antiquark pair. Because of 

the neutrino in the final state the top mass is not particularly accurately reconstructed. 
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Figure 4.17: Data from the D0 experiment on the mass distribution of top quark candidates and the likelihood 
derived from fitting to the top quark mass [ref. 1 – with permission].  

The final state is therefore a complex four jet + lepton + missing transverse energy event. 

In fact, early top candidate events for both CDF and D0 were already shown at the end of 

Chapter 2. As expected from our discussion in Chapter 2 on the accuracy of calorimetric mass 

reconstruction and missing transverse energy, the top quark experimental mass error is quite 

large. Nevertheless, although the experimental mass resolution is greater than the intrinsic width 

of the top, the mean value, or mass of the top, can still be determined very accurately.  

Data from the CDF experiment on top production is shown in Fig. 4.18. The CDF detector 

was capable of b tagging (see Chapter 2) using the precision silicon inner “vertex” tracking. The 

data shown here has either one or two jets “tagged” as likely to be a heavy flavor jet as a 

requirement to accept potential candidates.  
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Figure 4.18: Data from the CDF experiment on the reconstructed mass distribution of top quark candidates and the 
fitting minima for fits to the top mass. Expected distributions of both the top signal and residual backgrounds are 
indicated [ref. 1 – with permission]. 

There are two b quarks in each top pair event, so b tagging capability is very important in 

reducing backgrounds from W+W+jet+jet events. The CDF data shown here are for lepton + jets 

with silicon or b decay “lepton tags” (from b -> c + l + ν decays). The mass reconstruction of the 

top is again calorimetric. Therefore the intrinsic top width is again swamped by the instrumental 

resolution.   

The data from CDF and D0 can be combined to form the world average for direct 

measurements at the Tevatron. A summary is shown in Figure 4.19 for different final states 

corresponding to different decay modes of the W boson. The final state can be two b jets + two 

leptons + missing energy, four jets + one lepton + missing energy, or six jets. The combined data 

have an error on the top mass of about 5 GeV for data taken during the twentieth century. Future 

data taking beginning in 2001 with substantially increased luminosity will considerably reduce 

this error. This improvement will, in turn, have an impact on the limits we can place on the 

Higgs mass (see Fig. 4.39). 
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Figure 4.19: Data from both the D0 and CDF experiments on the measurement of the mass of the top quark [ref.1 – 
with permission].  

The mass of the top quark is so large that we expect perturbative QCD to give a very good 

description of the production dynamics.  Shown in Figure 4.20 is the cross-section for top pair 

production as a function of the top quark mass.  There is good agreement with the measured 

production cross-section at the measured top mass value. So far, there seems to be no mystery in 

the description of top production. 

 
Figure 4.20:  The predicted cross-section for the production of the top quark as a function of the top quark mass at 
the Tevatron. Also shown is the top cross section measured by D0 [ref. 9 – with permission]. 
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In Fig. 4.21 we show the COMPHEP Monte Carlo prediction for the gluon – gluon initiated 

cross-section for top pair production as a function of the C.M. energy in p – p collisions.  The 

gluon – gluon fundamental cross section, g g t t+ → +  rises by a factor ~ 600 in going from the 

Tevatron to the LHC. However, there are valence antiquarks available at the Tevatron, which 

softens this behavior somewhat, e.g. ttuu +→+ , but still a factor  ~ 100 rise in the cross 

section exists. That rise implies that strong top production is copious at the LHC. The resulting 

W pairs from top decay constitute a major background in some of the new particle searches in 

addition to the rarer background from electroweak W pair production.  

 

 
Figure 4.21: Cross-section from COMPHEP for the production of top quark pairs as a function of the C.M. energy in 
p – p collisions (g – g). The dot indicates the Tevatron measurement in 1.8 TeV pp − collisions. 

4.6 DY and Lepton Composites 

The cross-section obtained by CDF for the production of di - leptons as a function of their 

invariant mass is shown in Figure 4.22. The fundamental process is the annihilation of quark and 

antiquark into a Z boson, oq q Z+ → (or a photon). 
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Figure 4.22: a) Data from CDF on the production of lepton pairs at high mass. The Z mass is a prominent feature.  
The curves show the predicted anomalous production rates for composite leptons [ref. 10 – with permission]. b) The 
basic quark level diagram for D-Y production.   

The annihilation of a quark and an antiquark in the initial state is called Drell - Yan 

production for historical reasons. The cross section falls rapidly as the mass increases.  For a 

u d+  initial state the W- is a prominent feature of the spectrum, while for u u+  initial states the 

Z is the main high mass feature. There is also a continuum from the reaction 
*u u γ + −+ → → +� � due to virtual photon production.  Above the mass of the gauge bosons 

there is no known SM signal and searches for new states beyond the SM such as “composite” 

leptons or heavy “sequential gauge bosons” recurring at higher masses are made by exploring the 

high mass part of the ,ν− + −+ +�� � � distributions. There is an observed “continuum” with a 

featureless background. 

The data shown in Fig.4.22 show no unusual production of lepton - antilepton pairs at high 

mass.  This allows CDF to place a limit on the mass scale for lepton “compositeness” of roughly 

2 TeV. This limit is comparable to that assigned to quark compositeness mass scales set by the 

lack of anomalous jet production at high mass. 

The data on the “transverse mass” distribution, TM , of leptons and neutrinos are shown in 

Fig.4.23.  The transverse mass associated with a lepton and missing energy is defined in Eq.4.6. 

Because the longitudinal component of missing energy is very poorly measured due to small 

angle energy disappearing unobserved (recall the discussion in Chapter 2) we are limited to 

measuring the mass in the transverse plane. Examples of individual events with produced W 

bosons have already been displayed in Chapter 2, Fig. 2.7 and Fig. 2.23. 

a) b) 
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TElTTlT EPM /−/= φcos1(22 ) 4.6 

The variable TP �  is the lepton transverse momentum, TE/ is the magnitude of the missing 

transverse momentum and 
TEφ /

�  is the azimuthal angle between them.  

There is no known SM state that contributes to high transverse mass above the W peak. In 

the absence of any signal, the lack of events can be translated into a limit on the mass of particles 

predicted in SM extensions containing gauge bosons which are “recurrences” of the known W 

and Z bosons. The present data allow us to rule out sequential gauge bosons with a mass less 

than 650 GeV. 

 

 
Figure 4.23: CDF data on the transverse mass of lepton plus neutrino events at high mass. The spectrum is 
dominated by the W boson signal at a mass ~ 80 GeV. The predicted signal for a 650 GeV “sequential W” boson is 
also shown [ref. 11 – with permission]. 

The transverse momentum of the dilepton pair in the dilepton mass range of (66,116) GeV, 

encompassing Z boson production, is shown in Fig.4.24. It is strongly limited to low values, 

because it is due either to intrinsic parton transverse momentum or to initial state radiation (ISR) 

of, say, a gluon by the quark or anti-quark. In the latter case, we expect a cross section that falls 

as the third power of the dilepton transverse momentum. The observed distribution is at least 

qualitatively in agreement with that expectation. 
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Figure 4.24: CDF data on the transverse momentum distribution of the dilepton system in the dilepton mass range 
from 66 to 116 GeV. The dots indicate a two body like inverse cube dependence of the distribution on the transverse 
momentum [ref. 11 – with permission]. 

4.7 EW Production 

In the previous section we looked at the continuum production of lepton pairs. Resonant 

production of the W gauge boson and the Z boson are prominent features of the spectrum.  This 

large sample of singly produced gauge bosons can be used to extract some of their basic 

properties such as mass, decay width, and their different branching fractions. In turn, because 

these quantities are accurately predicted in the SM, we can test the SM to a high degree of 

precision. 

4.7.1 W Mass and Width 

The mass of the W and Z bosons is predicted in the electroweak theory, as discussed in 

Appendix A. The vacuum expectation value of the Higgs field is determined by the Fermi 

coupling constant, 1/ 2 2 174G GeVϕ< >= = . The weak coupling constant Wg  is related to the 

electromagnetic coupling constant e and the Weinberg angle Wθ , 
2 2/ 2 /8 , sinW W W WG g M g eθ= = . These two numbers, , WG θ , allow us to predict the W and Z 

masses. In fact, these predictions were available to the experimenters prior to the data taking runs 

where the W and Z were discovered at CERN in the early 1980’s. 

 GeVMM WWW 80~,2 22 ><= ϕπα  4.7 

We also saw in Appendix A that the gauge bosons have couplings to the quarks and leptons 

specified by the gauge principle. The coupling of the W to quarks is complicated by the 

existence of the weak quark mixing matrix 'qq
V . However, in first approximation we can treat the 

mixing matrix as diagonal. Thus the W couples to all lepton – neutrino pairs, 

, ,ee µ τν µ ν τ ν− − −+ + +  and the ,u d c s+ +  quark pairs with equal (universal) strength. We 

must remember to count all three possible quark colors in making a colorless final state (the W is 
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a color singlet because color is a strong interaction attribute).  These considerations lead to nine 

distinct dilepton or diquark final states with equal partial decay rates. The total decay rate is 

proportional to the weak fine structure constant Wα  and the W mass. 

 
( ) ( /12) ~ 0.21

~ 9 ( )

e W W

W e

W e M GeV

W e

ν α
ν

− −

− −

Γ → + =

Γ Γ → +
 4.8 

The total W decay width is predicted to be about 2.0 GeV.  The width to mass ratio for the 

W boson is about 2.5 percent, which makes the W a fairly sharp resonance. A schematic 

representation of the W two body decays into lepton and quark pairs is shown in Figure 4.25. 

                                             

W 

 
  
Figure 4.25: Schematic representation of the two body decays of the W boson into lepton and quark pairs.  Only 
“diagonal” quark pairs in the quark weak mixing matrix are shown. The quark pairs each have 3 identical color – 
anticolor entries in the sum over final states, ( , , )RR BB GG . 

The coupling of the Z bosons to quark and lepton pairs is also specified in the electroweak 

theory as sketched out in Appendix A.  For example, decays into neutrino – antineutrino pairs 

have a partial width, which is also proportional to the weak fine structure constant, and the Z 

mass. This dependence is clear from simple diagrammatic and dimensional considerations. 

 2( ) [ / 24][ / cos ] ~ 0.16W Z WZ M GeVνν α θΓ → =  4.9 

Data from both the D0 and CDF experiments are shown in Figure 4.26 for the production 

cross-section, branching ratio, and decay width of gauge bosons. We expect to find a value ~ 

nbBJM 9~)9/2~)(12)(/( 32 +Γπ  for the W cross section formed in u d+  and d u+  

annihilations, where the leptonic branching ratio for electrons or muons is, B ~ 1/9 = 0.11, and 

Γ~2.0 GeV from Eq.4.8. The data shown confirm these approximate expectations. 

αW 
(1) (1) (1) (3) (3)

e d sµ τ− − −

e u cµ τν ν ν

W−  
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Figure 4.26:�  Data from the LEP, � D0 and CDF experiments on the production cross-section, the branching ratio, and 
the decay width for both W and Z gauge bosons.  The vertical lines indicate the rough predictions made in the text 
for the total decay width and the electronic branching fraction [ref. 12 – with permission] 

The Z mass has been measured to extremely high accuracy at electron – positron colliders 

located at CERN (LEP) and the Stanford Linear Accelerator Center = SLAC (SLD). Therefore, 

we will assume we know it to arbitrary accuracy. The W mass is more difficult to measure. As 

we mentioned in Chpt.1, at LEP2 the production of W pairs has been measured. The shape of the 

cross section as a function of LEP C.M. energy as the WW energy above “threshold” at C.M. 

energy ~ 2MW is crossed then allows for a measurement of the W mass.  At the Tevatron, a 

direct measure of the invariant mass of the W decay products is used to determine the mass.  

 In the leptonic decay mode the neutrino is only “well” measured in the transverse plane. In 

the quark decay mode, the accuracy of calorimetric mass measurements is not very good (see 

Chapter 2). 

Therefore, CDF and D0 have concentrated on the leptonic decay mode using precisely 

measured muons (using the tracking – Chapter 2) or electrons (precision calorimetry and/or 

tracking). The Z can be used as a control sample. At large transverse mass the shape is 

dominated by the Breit - Wigner width, since the resonant falloff with mass is much slower 

(power law, 2[ /( )]oM MΓ − ) than the Gaussian falloff due to the error in the mass measurement. 

Therefore, the transverse mass distribution can be used both to measure the W mass and, using 

the high mass tail, the decay width (Fig. 4.26). In Fig. 4.27 data from both the CDF and the D0 

experiments on the transverse mass of W gauge bosons are displayed.  
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A good knowledge of the W transverse momentum spectrum is also needed to measure the 

mass accurately, because it influences the transverse mass distribution of the W. It is here that 

the Z, used as a control sample, is very useful in evaluating, and thus controlling, systematic 

errors. 

 

 
Figure 4.27: Data from the D0 and CDF experiments on the transverse mass of W bosons in lepton plus neutrino 
final states. The long resonant tail at high mass is displayed in the data, which allows for a simultaneous 
measurement of the W decay width [ref. 13 – with permission]. 

The collider data on direct measurement of the W mass are shown in Fig. 4.28. The 

measurements from CDF and D0 are combined with those from WW production at LEP (see 

Chapter 1).  

Finally, the current world data on the mass of the W is shown in Fig. 4.29. Data from 

proton-antiproton colliders is combined with the direct data from WW production in electron – 

positron machines as shown in Fig. 4.28. Then indirect measurements using data which depends 

on virtual W exchange is combined with the direct measurements. These give the combined 

result quoted below. As we will see later in this chapter, precision data on the top and W masses 

can be used along with electroweak calculations of the radiative mass shift due to higher order 

“loop” processes to set limits on the Higgs mass. 
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Figure 4.28: Determinations of the W mass from the UA2 (CERN), CDF and the D0 experiments and LEP 
experiments directly producing W gauge boson pairs [ref. 13 – with permission]. 

Direct

Precision EW 
measurements

  
Figure 4.29: Data on the W mass from direct measurements at CDF, D0 and LEP and from indirect measurements 
using lepton scattering data [ref. 13 – with permission].  

 The dependence of the distribution of transverse mass on the W decay width is shown in 

Fig. 4.30. The fractional differences arising from different decay widths are most apparent at 

high transverse mass, as expected. Clearly, with a sufficient number of events, an accurate 

measurement of the W width is possible (see Fig.4.26). 
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Figure 4.30: Monte Carlo results for the W transverse mass. The different curves correspond to W decay widths of 
1.5 to 2.5 GeV [ref. 14 – with permission]. 

4.7.2 PT of W  

The Drell – Yan production of a single W is a 2 -> 1 process, with essentially no transverse 

momentum in the final state. As we saw with charmonium (Chapter 3) and lepton pairs (Chapter 

4), this is true to lowest order, but initial state radiation will cause the W to have a finite 

transverse momentum. In fact, we will see in Chapter 5 that one important mode for Higgs 

production arises from the radiation of a Higgs by a highly virtual W or Z gauge boson (Higgs 

bremsstrahlung ). 

Data for single W production taken at the Tevatron are shown in Fig. 4.31. The transverse 

momentum of the W peaks at very low values. Although the data is for any event with a found 

W, there are very often jets found which accompany the W. One of the Feynman diagrams used 

in the COMPHEP Monte Carlo program for initial state radiation by the colored quarks is also 

shown in Fig. 4.31. Topologically these diagrams are just our basic two body scattering.  

Therefore, we expect that the transverse momentum of the W gauge boson is distributed as the 

inverse cube of the transverse momentum as we saw for the Z in Fig.4.24. The line shown in Fig. 

4.32 has this behavior, and we can see that it is a reasonable representation of the results of the 

full Monte Carlo model, at least at high transverse momenta. 
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Figure 4.31:a) D0 data on the transverse momentum distribution of singly produced W bosons. The dots indicate a 

31/ TP  behavior. b) Schematic representation of this process showing initial state gluon radiation (ISR) which causes 
a recoil transverse momentum to be taken up by the W boson [ref. 15 – with permission].  

 
Figure 4.32: The COMPHEP distribution of W transverse momentum for the production of W gauge bosons and 
gluons in the final state, u d W g++ → + . The line shows typical two body scattering behavior, where the 
transverse momentum is distributed as the inverse cube, 31/ TWP . 

4.7.3 W Asymmetry 

There is an asymmetry in the production of W bosons in proton-antiproton collisions which 

is due to a combination of two effects; the V-A nature of the weak interactions (see Appendix A) 

and the dynamics of W production.  In the example of W+ production from valence quarks 

shown in Fig. 4.33, the positrons are preferentially emitted in the direction of the antiproton. The 

similar reaction, eu d W e ν− −+ → → +  sends electrons in the direction of the proton. 
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Figure 4.33: Schematic representation of the spin correlations in proton - antiproton production of single W gauge 
bosons. Momenta are indicated as arrows, spin directions as thick arrows. Positrons are preferentially emitted in the 
direction of the incident antiproton. 

The V-A, parity violating, nature of the weak interactions makes light quarks and leptons, 

( eedu ν,,, −  in the first generation) left handed  (negative helicity, where helicity is the 

projection of spin on the direction of the momentum) and the corresponding anti-

particles, , , , eu d e ν+ , right handed (positive helicity). 

The lepton charge asymmetry can be used to study the difference in the up and down quark 

distribution functions of quarks in the proton. The final lepton charge asymmetry is clearly 

dependent both on the V-A dynamics and on the distribution of u and d quarks in the proton. 

Assuming that we fully understand the fundamental two body weak production and decay 

dynamics, we can use the data to constrain the input values for the u(x) and d(x)  quark 

distribution functions.  

The CDF data on the lepton charge asymmetry as a function of the lepton rapidity is shown 

in Fig. 4.34. Subsequently, that data has been used to constrain the quark distribution functions. 

At large x, the value of u(x) is larger than d(x) even though both are valence quarks with equal 

binding (color). That is seemingly just an experimental fact we need to remember. 

 
 p p 
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Figure 4.34: Data from CDF on the lepton charge asymmetry as a function of the lepton rapidity in the production of 
single W bosons [ref. 16 – with permission]. 

4.7.4 b Pair Decays of Z, Jet Spectroscopy 

The calorimetric resolution for dijet masses is important in searches for the Higgs boson. 

Data from CDF are shown in Fig. 4.35.  These data serve to indicate the mass resolution that can 

be obtained in jet spectroscopy. The data come from a sample of dijets with two decay 

vertices identified (“b tags”, see Chapter 2). The observed mass resolution is roughly dM ~ 12 

GeV. The error due to energy measurement can be estimated (roughly) to be 7 GeV (a = 60%, 

see Chapter 2). Clearly, there are other contributions to the mass error that arise in defining jet 

energy which lead to the total mass error. This exercise is essential practice and serves as a 

control sample for searches in dijet mass spectra. We will use these estimates to extrapolate to 

the mass resolution expected in calorimetric Higgs searches in our discussions in Chapter 5. 

We can note that ~ 20% improvements are being seen in mass resolution if tracking 

information is used in conjunction with calorimetric measurements. This is called “energy flow” 

in the literature. The idea is simple. Tracking measurements of charged pion momenta are much 

better than calorimetric measurements at “low” momenta ( < 100 GeV ). Much larger 

improvements are expected for detectors used in electron – positron machines because there is no 

confusion from an underlying event. 
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Figure 4.35: Data from CDF [ref. 3 – with permission] on the dijet mass distribution reconstructed by calorimetry.  
The jets have both been tagged as b quark candidates using the silicon tracking detectors (see Chapter 2).  

2 – What is MH and how do we measure it ? [ this refers to the second of the dozen questions 

raised in section 1.7. We will repeat them as we get to the point of trying to address them]. 

4.8 Higgs Mass from Precision EW Measurements 

At this point we can finally begin to address the second unanswered question first posed at 

the end of Chapter 1.  “What is MH and how do we measure it?”  First, however, we need to 

digress a bit and look at the effects of higher order quantum “loops” on observable quantities. As 

with charge, the operational mass of a particle (defined by the behavior of the “propagator”) is 

not a fixed constant but is an effective constant in quantum field theory with a value that depends 

on higher order quantum processes as discussed in Appendix D. The experimental exploration of 

the SM has now progressed in accuracy to the point where we can test its’ predictions at “one 

loop” in the perturbation expansion in powers of the weak coupling constant.  

In Fig. 4.36 we show a schematic representation of the fermion and boson loops 

contributing to a propagator. Since the propagator is altered by these loops and since it has the 

form, )/(1)( 22 MqqV += , to lowest order (see Eq.1.6), we can expect that the mass will be 

altered by the loop contributions. Indeed, this is correct. Conversely, measuring the mass very 

precisely, we learn about the particles which exist virtually in the quantum loops. In fact, we can 

constrain the mass of the Higgs boson since it is one of the particles in the loop. 
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Figure 4.36: Schematic representation of the virtual decay, qqpp +−→ )( , and subsequent absorption, 

pqqp →+− )( , of a pair in a “loop diagram”. 

A particle propagates virtually with momentum p and then virtually decays into a pair of 

fermions or bosons which are reabsorbed to reform the initial particle. This is a higher order  

“loop” diagram. The “running” of the coupling “constants” is also due to higher order quantum 

loop corrections and has already been discussed in section 4.2 and Appendix D.  

We assert that the propagators for fermions and bosons are different, 21/ , 1/q q  

respectively, for massless quanta. We have already mentioned, Eq.1.6, that the propagator for 

massless bosons can be thought of as the Fourier transform of the Coulomb interaction potential.  

The propagator for fermions follows from a study of the massless Dirac equation (see the 

references given at the end of Chapter 1 and Appendix A). 

 The expressions for the modification to the propagator (or mass squared) of particle p due 

to fermions and bosons in the loop come after integrating over all possible virtual loop momenta. 

 

4 2 3 2 2

4 2 2 3 4

/( ) ~ / ~ ~

/( ) ~ / ~ / ~ ln( )

m

M

d q q q dq q qdq m

d q q q dq q dq q M

∫ ∫ ∫
∫ ∫ ∫

 4.10 

  We see that for fermions the integral goes as the square of the fermion mass, m, while for 

bosons it has a much weaker dependence, going as the logarithm of the boson mass, M. 

The Higgs mass is a free parameter in the current “Standard Model” (SM). There are two 

parameters in the Higgs potential, and one is fixed by the measurement of the vacuum 

expectation value of the Higgs field using G. The other can be taken to be the Higgs mass, and it 

is also not determined by theory and must be determined from experiment. Precision data taken 

on the Z resonance does, however, constrain the Higgs mass. The Z mass is known very well. 

The top and W masses are determined as we discussed in this chapter,  mt = 176 ±  6 GeV, MW = 

80.41 ±  0.09 GeV. Both measurements are statistics limited at present, so we can expect 

improvements in the near future as CDF and D0 gather more data. 
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The SM at lowest order predicts that MZ = MW/cosθW as we showed in Appendix A. 

Radiative corrections due to loops will modify this relationship because for Z loops there are top 

pairs of fermions, while for W+ loops the pair is a t b+ . Therefore the mass in the loop differs, 

causing a differential shift of the Z mass with respect to the W mass. 

 A schematic representation of the important loop diagrams for W gauge bosons is shown 

in Fig. 4.37. The best determined parameters in the SM for the electroweak interaction are G 

(muon decay), the Z mass (LEP), the fine structure constant, α, and the Weinberg angle θW 

(neutral current neutrino interactions, Z lepton and quark decay asymmetries). These parameters 

are sufficient to predict the W mass up to radiative corrections due to top loops and Higgs loops. 

The program is then to precisely measure the W mass and the top mass and thus constrain the 

Higgs mass. 

W

W

W

W

b

t 

H

W  
Figure 4.37: Loop diagrams for the virtual W decays which contribute to the W boson mass.  There are both quarks, 
b and t, and gauge bosons, W and H, in the intermediate states. The couplings are Wtb and WWH. 

The expression for the shift of the squared W mass due to the fermion and boson loops is 

given in equation 4.11.  We see the expected quadratic mass dependence for the fermions and the 

logarithmic mass dependence for the bosons. There are opposite signs for the contributions to 

mass from fermion and boson loops. This sign difference will be crucial in our discussion of 

SUSY in Chapter 6.  As the top mass increases the W mass increases (fermions) while the W 

mass decreases as the Higgs mass increases (bosons). 
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The explicit sensitivity of the W boson mass to the top mass is; 

 tWtWW dmMmdM )/)(16/3( πα=  4.12 

 

For example, the present top uncertainty of  ~ 5 GeV in mass leads to a 22 MeV shift in the 

W mass. The dependence on the Higgs mass is much weaker.  For a Higgs mass between 100 

and 1,000 GeV, the W mass shifts by only 130 MeV. The student is strongly encouraged to put 

some numbers into equation 4.11 in order to get a feel for the sensitivity involved.  The result of 

plugging in the numbers is shown in Fig. 4.38. Clearly, an accuracy of 25 MeV on the W mass 

(~ 0.3 %) or better is needed to define the Higgs mass to 100 GeV in the context of the SM.  
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Figure 4.38: Data from the Tevatron experiments using both the direct top quark mass measurements and the 
precision W mass measurements to constrain the Higgs mass. 

A more comprehensive compilation of all the presently available precision data is shown in 

Fig. 4.39. The direct measurements of the top and the W masses appear as a circular area. 

Indirect measurements of electroweak parameters are shown as a separate allowed region. These 

two sets of independent measurements are not particularly consistent. Therefore combining data 

and thereby reducing the errors is perhaps not a good idea because of systematic uncertainties. 

MW(GeV) 

mt(GeV) 
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Figure 4.39: Constraints on the Higgs mass due to measurements of the W mass, the top mass, and the other 
precision electroweak data [ref. 17 – with permission]. 

In addition, the contours plotted only include one standard deviation (68% confidence 

level) instead of the more conventional two standard deviation contours.  In any case, it appears 

that a light Higgs mass is “favored” by the existing electroweak data if the SM is a correct 

theory.  Clearly more data with higher statistics, which will eventually be available from CDF 

and D0, will tell us whether the prediction of a low mass Higgs boson persists and is made 

sharper.   

Note, however, that this analysis assumes that the Standard Model is a fundamental theory, 

while it is felt by many, because of the unanswered questions posed in Chapter 1, to be 

incomplete and thus only an effective field theory.  Therefore, the derived constraints on the 

Higgs mass are not logically self consistent.  A more general analysis makes for much less 

restrictive Higgs mass constraints. We must be careful to avoid making glib arguments when 

looking into unknown phenomena. Clearly, a strong statement about the Higgs mass is not 

possible at present. 
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Exercises 
 
1. Use the formulae developed in Chapter 3 to estimate the cross section in p - p collisions at 

2 TeV C.M. energy for g – g scattering at a mass of 200 GeV. Compare the result to the 
data shown in Fig. 4.3. (use 4=∆y , C = 1 ) 

 
2. Show that 2ˆ/1~ˆ/ ttddχ . 
 
3. Plot GeVQ QCDs 2.0),( 2 =Λα from 1 GeV to 1 TeV. Compare to Figure 4.7. 

 
4. Look at the plot of the strong coupling constant in COMPHEP. Compare it to Figure 4.7.  
 
5. Use Table 3.1 to estimate b quark pair production with respect to jet production 
 
6. Evaluate the muon lifetime in Eq.4.4 and compare to the experimental value of ~ 2.2 µsec. 

(n.b. 256.6 10 secx GeV−=� ). 
 
7. Find the muon decay width in COMPHEP and compare to the result of Exercise 6. 
 
8. Evaluate the top decay width using Eq.4.5. 
 
9. Use COMPHEP to evaluate the top decay width, and compare to Exercise 8. 
 
10. Make the numerical calculation shown in Eq.4.7 for the W decay width. 
 
11. Evaluate the loop contribution of the Higgs to the W mass, Eq.4.10, for Higgs masses of 

100, 300, and 1000 GeV and compare to Fig. 4.36. 
 
12.    Differentiate the expression for the W mass to show that 

2/ [ 11 tan / 48 ]( / )W W W W H HdM M dM Mα θ π= − . 

13. Evaluate the expression derived in exercise 12 to show that )/(57~ HHW MdMMeVdM . 

For Higgs mass from 100 to 1000 GeV take the fractional Higgs mass variation to be ~ 3 
with respect to the mean of ~ 300 GeV and compare to Figure 4.36. 

 
14. Use COMPHEP to evaluate g g t t+ → +  in proton-antiproton collisions at 900 GeV + 

900 GeV C.M. energy. Compare to the data given in this Chapter. Try u u+  quark 
annihilation into top pairs. Is the cross section larger? Why? 

 
15. Use COMPHEP to evaluate the radiative width of the W, W+-->E1, n1 and W+-->E1,n1,A. 

What fraction of 2 body W decays have a photon emitted by the electron? 
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16. Evaluate the Drell-Yan process, u,U->e1,E1 for proton-antiproton collisions at 2 TeV C.M. 
energy for masses > 50 GeV. Compare to the data given in this Chapter 
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5. Higgs Search Strategy 

 “You may seek it with thimbles--and seek it with care; ….. you may charm it with smiles and 

soap” -- The Hunting of the Snark -- Lewis Carroll 

“Come Watson, the game is afoot” – Sherlock Holmes 

We are now ready to examine the experimental search strategies for first discovering the 

Higgs boson and then finding out whether the properties are what we expect if the SM is correct. 

For example, is the coupling to W and Z bosons as predicted? Does the coupling to fermions and 

leptons go as the fermion mass? Are the self-couplings of the Higgs as predicted? New 

experiments being prepared for the LHC at CERN are explicitly designed to attempt to answer as 

many of those questions as possible. 

The expected properties of the Higgs boson were first mentioned in Chapter 1 and 

Appendix A. The accuracy of the measurements of the SM particles into which the Higgs decays 

was explored in Chapter 2. The formulae needed to calculate p – (anti)p production cross 

sections were given in Chapter 3 and the hadron collider state of the art was presented in Chapter 

4. We now put all of this information together in order to look at the production and decay of the 

Higgs boson, the last undiscovered particle in the SM “periodic table”. We want to find the mass, 

width, couplings to fermions and gauge bosons, and self-couplings of the Higgs boson. 

5.1 Cross Sections at the LHC 

We first mention the “minimum bias” rates for “inclusive” or unselected inelastic events at 

the LHC. The expected total inelastic cross section is Iο ~ 100 mb, of which ~ 50 mb is not 

“diffractive” in character. Diffractive events send a scattered proton at small angles to one or the 

other or both of the incident proton beams. We assume here that these scattered protons exit at 

angles less than those covered by our detectors. There are specialized experiments that will run at 

the LHC, which will detect the low transverse momentum protons in order to study the elastic 

and diffractive interactions. In what follows we specialize to non-diffractive high transverse 

momentum reactions. 

In Chapter 3 we first mentioned 2 -> 1 resonance production. In the narrow width 

approximation, these processes have fundamental cross sections as shown in Eq.5.1. 

                                                    ( ) 32 M/1J2~ˆ Γ+πσ  5.1 

For example, the Drell–Yan production of W bosons can be estimated, with M = MW, J=1, 

and Γ = ΓW, to be ~Wσ� nb47 . 
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For any fundamental two body scattering a rough approximation for the cross section for 

production of pair of particles of mass Mo, 

 2
o21 )M2/(~ˆ απασ∆  5.2 

For two body scattering, the point - like scattering dynamics leads to a mass distribution, 

dMd /σ̂  which goes as the inverse cube of the mass. Integrating that distribution above a 

threshold at 2Mo, we are lead to Eq.5.2. For example, WW production is estimated to be, 
2 2ˆ ~ /(2 )WW W WMσ πα∆  = 50 pb.  

In comparison to the inelastic non-diffractive cross section the Higgs production cross 

section is very small, ( ~ 50 , (120 ) ~ 20I Hmb GeV pbσ σ ), in the ratio of 4 x 10-10. Because 

the Higgs cross section is so small, we must have high luminosity and that, in turn, means an 

enormous rate of particles from uninteresting ‘minimum bias” or inelastic, non-diffractive 

events. 

The last quark discovered in the SM was the top quark, found at the Tevatron. The CDF 

and D0 experiments successfully found the top quark, which has a cross section ~ 10
-10

  of the 

total cross section.  

The cross section for various processes in p – (anti)p collisions is shown as a function of 

C.M. energy in Fig. 5.1. The cross section for Higgs masses other than 500 GeV can be extracted 

from Fig. 5.3. For the LHC we will assume a design luminosity of sec)/(10 234 cm . For one year 

of running we put in an efficiency of ~ 1/3 or a data taking time of sec107 . This means a 

sensitivity of yrfboryrcm /100/10 1241 − . In one year at design luminosity 100,000 (1,000,000) 

Higgs particles of 500 GeV (100 GeV) mass will be produced. Note that the cross section for top 

at the Tevatron is about the same magnitude as a 100 GeV Higgs at the LHC. Nevertheless, 

because the Higgs mass is unknown and could be up to 1 TeV, the LHC accelerator and detectors 

must prepare to explore cross sections much lower than those probed at the Tevatron. 
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Figure 5.1: Cross section for all, b quark, W, t quark, and 500 GeV Higgs particles as a function of the C.M. energy. 
The dot indicates the LHC cross section for a 100 GeV Higgs boson. The triangle indicates top production at the 
Tevatron [ref 1 – with permission]. 

A 500 GeV mass Higgs has a production cross section 1000 times smaller at the Tevatron 

than at the LHC, but the inelastic cross section is roughly the same at the two energies. Even at 

the LHC, a 500 (100) GeV Higgs has a cross section with respect to the inelastic cross section of 

only ~ 10
-11(10-10), which requires great rejection power against backgrounds and a high 

luminosity. This rejection must exceed what has presently been achieved for the top quark. As 

we noted in Chapter 2, multiple redundant measurements of the SM particles will be required if 

the needed rejection power is to be achieved in the LHC experiments.  

We also see that the cross section for the strong production of top pairs, each decaying into 

W + b, rises very rapidly from the Tevatron to the LHC, as we mentioned in Chapter 4. These 

top pairs will make a background of W pairs, which will complicate our Higgs searches when we 

are trying to measure the Higgs WW branching ratio. The top cross section exceeds that for a 

500 (100) GeV Higgs boson by a factor ~ 300 (10). 
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5.2 Higgs Direct and “Loop” Couplings 

In Appendix A we derived the coupling of the Higgs field to the gauge bosons. We also 

postulated the Yukawa coupling of the Higgs to the fermions, and found that the coupling 

constants were proportional to the masses of the fermions. These couplings then imply calculable 

decay widths of the Higgs boson into quarks and leptons, which were first given in Chapter 1 and 

are repeated here. The quark decay width is three times the lepton width due to the final state 

sum over colors.  

 ( ) 3 ( )H qq H llΓ → = Γ →  5.3 

 2( ) (3 /8)( / )W q W HH qq m M Mα Γ → =    

The decay width to quarks and leptons is linear in the Higgs mass and quadratic in the 

quark or lepton mass. Since we will be interested in Higgs decays into large branching ratio 

decay modes, we will consider decays to b quark pairs or τ lepton pairs. The top quark is so 

heavy that top quark pairs are above ZZ threshold, but the stronger gauge boson couplings still 

dominate (see Fig. 5.15). 

 2/)()( WWHZZH →Γ=→Γ  5.4 

 2( ) ( /16)( / )W H W HH WW M M Mα
� �

Γ → = � �  

The coupling of the Higgs to gauge bosons goes as the cube of the Higgs mass. This means 

that the Higgs state ceases to be recognizable as a resonant peak when the weak interactions 

become strong, at high Higgs masses. The effective limit, ~H HMΓ , on the observable Higgs 

mass is then ~ (1.0-2.0) TeV. 

There is no direct Higgs coupling to photons or gluons since the Higgs has no electric 

charge or color. Since the Higgs couples to mass and the photon and gluons are massless, that 

decoupling is natural.  However, there are higher order couplings. We use as intermediate states 

the heaviest object that carries both color or charge and weak charge, the top quark. The decay 

widths are given in Eq.5.5, where the symbol |I| indicates a loop integral defined such that it is a 

number of order one.  

 

2 2 2

2 2 2

( ) ~ ( /8)( / ) ( / ) | | / 9

( ) ~ ( / 9)( / ) ( / ) | | / 9

W H W s g H

W H W H

H gg M M I M

H M M I Mγ

α α π

γγ α α π

� � � �
Γ → �  �  

� � � �
Γ → �  �  

 5.5 

These results are approximate and only refer to the top contributions to the loop while 

several other particles, e.g. W for photons, can contribute. Explicit dependence on the top quark 

mass, which is expected from our previous discussion of fermion loop contributions to the W and 

Z mass, is contained in the loop integrals and is not shown here. 

5.4 
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These loop decay widths look like allowed decays, Eq.5.4, but with an additional factor 

given in the right most brackets containing the loop integral |I| and the strong or electromagnetic 

fine structure constant squared. That latter factor comes from the two added vertices shown 

schematically in Fig. 5.2. Clearly, we can think of these decay modes as being due to a Higgs 

decaying virtually into a top pair followed by quark radiation of two photons (two gluons), 

leading to the α2 ( 2
sα ) factor in the decay width.  

 
 

 

 

 

Figure 5.2: Schematic representation of the top loop decay of the Higgs boson into two photons.  

Numerically, for a Higgs boson of 150 GeV mass, the gluon-gluon decay width is ~ 0.25 

MeV and the two photon width is ~ 1.16 keV if we ignore the lop integral, |I|. In comparison the 

b pair direct decay width, Eq.5.3, using 4.5 GeV for the b quark mass, is ~ 6 MeV.  

The effective Higgs gluon coupling constant is, 2~ ( / 9)( / )gg W sα α α π . Note that 

COMPHEP does not contain loop diagrams, so that these indirect decay modes are not present in 

COMPHEP. However, an effective ggH or γγH interaction may be added to the Standard Model 

vertices by editing the COMPHEP file. The interested student is encouraged to attempt this feat. 

We saw in Chapter 3 that the proton consists of u and d quarks and gluons. The masses of 

the u and d quarks are both ~ MeV (see Fig.1.2). Therefore, given the quadratic dependence of 

the Higgs width on quark masses, Eq.5.3, the coupling of the Higgs to ordinary matter is very 

weak. Likewise, the coupling to the massless gluons is higher order in the coupling constants and 

correspondingly weak. The major production mechanism at the LHC is the higher order process 

with Hgg coupling because the gluons are copiously available in the proton at low x. Thus the 

most important production mechanism involves particles (gluons) which do not even couple to 

the Higgs at lowest order in the coupling constants. 

5.3  Higgs Production Rates 

5.3.1  gg Fusion 

In Chapter 3 we derived formulae for the cross section for 2 -> 1 processes. We recall the 

kinematics, x1x2 = MH
2/s, and for production at rest in the C.M. system, x1 = x2 = <x> = MH/√s. 

αW 
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αW 
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For a light Higgs mass at the LHC with C.M. energy = 14 TeV the x values are small. For 

example, a 150 GeV Higgs is produced by gluons with  <x> ~ 0.011.  

The formation cross section is, dσ/dy ~ π2Γ(H-->gg)/(8MH
3)[xg(x)]x1[xg(x)]x2 . The 1/8 

color factor has been applied because the produced Higgs is colorless and there are 8 colored 

gluons subsumed in the distribution function g(x).  Of the 8 x 8 combinations of a gluon from 

one proton and a gluon from the other, only eight are colorless, e.g. GRxGR .  

Using Eq.5.5 for Γ(H-->gg), using the gluon distribution mentioned already, [xg(x)] = 

(7/2)(1-x)6, and taking x1=x2=MH/√s, dσ/dy ~ 49π2[Γ(H-->gg)/(32MH
3)][(1 - MH/√s)12]  ~  

49π2Γ(H-->gg)/(32MH
3), assuming a light Higgs where <x> << 1. The MH

3 behavior of Γ(H-

>gg) roughly cancels the 1/ MH
3 behavior of dσ/dy, resulting in a Higgs cross section which is 

approximately independent of Higgs mass, for light Higgs, dσ/dy ~ 49|I|2αs
2αW/[2304MW

2]. 

Numerically, dσ/dy ~ 443 fb on the rapidity “plateau” where y ~ 0, if |I| ~ 1, or σ  ~ 2.2 pb 

(∆y ~ 5) for a light Higgs at CMS. This agrees very roughly with the complete results shown in 

Fig. 5.3. Note that we do not expect good agreement because the residual loop integral |I| has 

some dependence on the Higgs mass. For a design luminosity of 1034/cm2sec or ~ 100 fb-1/yr, 

CMS will produce ~ 200,000 light Higgs/yr.  The high luminosity is required for a statistically 

convincing discovery once the effects of detection efficiency and decay branching fraction to a 

particular final state are taken into account.  

Suppose we look at the experimentally clean signature, H � ZZ � four leptons. There will 

be two narrow dilepton mass peaks at the Z mass. The experimental resolution for the Higgs 

mass is also quite good, since accurate tracking measurements of the lepton momenta are 

available. Using Eq.5.4, the branching fraction into Z pairs is ~ 1/3. Since the branching fraction 

of Z into electron or muon pairs is 7% (the student can verify this using COMPHEP, Z->2*x), if 

we assume fully efficient triggering, detection, and reconstruction efficiency, we find that in one 

year of data taking at design luminosity the number of signal events, = S, is 327 Higgs decays 

into the four lepton final state. If there were no background, B = 0, the signal would be an 18, = 

√327=√S, standard deviation effect, which is a “convincing” discovery. A one standard deviation 

fluctuation, for Gaussian errors, is 68% likely. A two-sigma effect is 90%, and a three-sigma 

effect is 95% probable. Most physicists “believe” an effect of five standard deviations or larger if 

the systematic errors appear to be under control (see Fig. 5.35). 
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We show complete Monte Carlo results for the Higgs production cross section as a function 

of Higgs boson mass in Fig. 5.3. The dominant mechanism is gluon – gluon fusion as expected. 

In our approximate order of magnitude estimates given above for a light Higgs we have ignored 

the |I| dependence on the Higgs mass (n.b. there is a peak in the cross section shown in Fig. 5.3 at 

~ twice the top mass where the loop integral becomes a maximum). We also ignored the 

additional contributions of particles in the Hgg loop.  Finally, we ignored the falloff of the gluon 

distribution functions at larger x and the rise of [xg(x)] at low x, which was mentioned in 

Chapter 3. All these effects contribute to the mass dependence exhibited in Fig. 5.3. 

 
 

Figure 5.3: Cross section for the production at the LHC of a Higgs boson as a function of its mass. The main 
production process is gg fusion, but rarer processes are also indicated [ref. 2 – with permission]. 

We will adopt representative masses for the Higgs of  120, 150, 300 and 600 GeV, with g-g 

fusion cross sections of ~ 30, 20, 10, and 2 pb respectively in what follows. For these masses we 

estimate the total Higgs width to be 3/2 times the WW decay width or ~ 0.0, 1.6, 13.2, and 105 

GeV. At ~ 120 GeV the total Higgs decay width is very small because the Higgs mass is below 

the WW threshold ~ 2MW ~ 160 GeV. It should be clear that the final state Higgs decay mode 

used and the expected rates are very dependent on the Higgs mass. Because this mass is 

unknown over a rather wide mass range, we must create a flexible search strategy in order to be 

moderately sure to be successful.  

There are 4,000,000 to 200,000 Higgs events produced/year for masses from 120 to 600 

GeV according to Fig. 5.3. Using the experimentally clean ZZ decay mode, for Higgs bosons 
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above ZZ threshold, with masses from 180 to 600 GeV, there are, for 4H ZZ→ → !  decays,  ~ 

8000 to 800 four lepton Higgs signal events per year at full LHC luminosity. This leads to a 

resonant signal, which is detectable with a high level of statistical significance, as we will see 

below. In the extreme case of no background, S ranges from 89 to 28 standard deviations. 

Even at 1/10 of design luminosity, the LHC provides several discovery possibilities, as 

shown in Table 5.1. For example, the enormous numbers of produced b quarks makes the LHC a 

true “b factory”. Higgs particles are discoverable in a single year even at this reduced luminosity 

if they are sufficiently light, roughly 700 GeV or lighter. 

Table 5.1 LHC event rates for “low luminosity” operation at sec/10 233 cmL = . 

Process σ(pb) Events/Second Events/Year 
W → e 1.5 x 104 15 108 

Z → e+e- 1.5 x 103 1.5 107 

tt  800 0.8 107 

bb  5 x 108 5 x 105 1012 

H (mH = 700 GeV) 1 10-3 104 

5.3.2 WW Fusion and “Tag” Jets 

Before looking at possible Higgs final states we will explore production mechanisms that 

are not dominant. We do this because ultimately we want to measure the Higgs coupling to as 

many quarks, leptons and gauge bosons as possible. The g-g fusion production mechanism 

basically measures the Htt coupling. That coupling will be convoluted with whatever couplings 

lead to the final state we study. The g – g mechanism is also sometimes not sufficiently 

distinctive to allow us to extract a Higgs decay signal into a particular final state because of the 

large backgrounds. 

In that case, we use other, more distinctive, production mechanisms, which are biased 

toward rarer electroweak production processes. Additional rejection power against background 

can sometimes be obtained by using the characteristics of Higgs bosons; preferential coupling to 

gauge bosons and to high mass quarks and leptons. We will see that, for example, use of the WW 

fusion process with detected ‘tag jets” allows us access to Higgs decays into W pairs and τ pairs, 

which are buried in large backgrounds if only gg fusion production is considered.  

Thus, by using different production mechanisms, other Higgs decay modes can be 

measured in addition to the rates to Z pairs and thence into four charged leptons or the rate into 

photon pairs. These are the only decay modes available using the dominant Higgs production 
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process, gg fusion.  Obviously, improvements are of crucial importance because we aim not just 

to discover the Higgs boson, but also to measure as many of its properties as we can.  

The “WW fusion” mechanism refers to the virtual emission of a W boson by a quark, e.g. u 

-> W++ d, from both incident protons, followed by the inverse decay, or fusion, of the Higgs to a 

W pair. This mechanism is illustrated in Fig. 5.4. Clearly, this is a useful process to measure on 

its’ own right as it depends on the HWW coupling, compared to the gluon fusion which depends 

on the Htt coupling.  The recoil jets are emitted at small angles to the proton direction and are 

called “tag” jets because they are an indication, or tag, that a virtual W was emitted.  

 
Figure 5.4: COMPHEP diagram for the production of the Higgs boson in association with recoil jets from virtual W 
emission. 

The “WW fusion” mechanism is very similar to the analogous process where electrons or 

positrons emit photons, replacing the electromagnetic radiation of photons with the charge 

changing weak reaction. The final state is any state that can be formed from two photons. The 

process is “tagged” by the existence of two recoil electrons in the final state emitted at small 

angles with respect to the incident beam. The produced state has the quantum numbers of two 

photons, C = 1 and  ++++ 2,0~PCJ . By the same reasoning, if a Higgs weak decay mode into 

two photons is established, then we will know that the Higgs spin cannot be = 1. 

Some LEP data for two-photon production is shown in Fig. 5.5. The resonant states, which 

are produced, are “filtered” by the production mechanism to have only the quantum numbers 

available to diphotons. 
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Figure 5.5: Feynman diagram for two-photon production of final states in electron – positron collisions. The mass 
spectrum of the two pion final state is also shown indicating significant resonant production [ref. 4 – with 
permission]. 

In Chapter 3 we argued that radiation is soft and collinear. Thus, we expect that the tag jets 

in WW fusion have low transverse momentum, ~ one half the W mass, and large longitudinal 

momentum. The pseudorapidity distribution of the tag jets was already shown in Chapter 2 in the 

discussion of the required angular coverage for a typical detector operating at the LHC. 

  The distribution function, / ( )q Wf x , for W emission by a quark q is calculable in 

perturbation theory, /[ ( )] ~ ( / 4 )q W Wxf x α π , where the basic radiative behavior, [xf(x)] ~ constant 

is evident. For a WW mass of M and a quark pair “parent” mass of s
�

, the kinematics is 

familiar from the similar situation worked out in Appendix C, ττ == 21
2 ,ˆ/ xxsM  . The integral 

representing the joint probability to emit a W from one proton and another W from the other 

proton at a WW mass M is given as WWI  in Eq.5.6.                
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 The resulting fundamental cross section, using the WW Higgs decay width given in 

Eq.5.4, is similar in form to the estimate we made for the gluon – gluon formation of Higgs 

bosons. 

γγΓ  

' ' ' ' 2 3

3 2

ˆ ( ) ~ 16 ( / )

~ [( ) ln(1/ )] /16
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qq q q WW q q H M I

M
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In electron-positron collisions the two photon cross section, e e e X e+ − + −+ → + +  exceeds 

the one photon cross section, e.g. e e q q+ −+ → + , for C.M. energy in the few GeV range and 

above. The ratio of the cross sections for the two analogous processes in p-p collisions is 

proportional to the ratio of the strong to weak fine structure constant squared, times factors of 

order one. Since the ratio, 2( / )W sα α , is only ~ 1/9, the WW fusion process is expected to be a 

substantial fraction of the full Higgs production cross section. 

                                 

 Indeed, as seen in Fig. 5.3, the WW fusion cross section is always more than ~ 10% of the 

gluon - gluon fusion cross section. Therefore, experimental search strategies using the tag jets are 

useful at the LHC. 

The COMPHEP Feynman diagrams for production of a Higgs via WW fusion with 

subsequent decay into WW or WW* (Higgs with masses below WW threshold which decay have 

one of the W “off mass shell” or virtual, which is indicated at W*) are shown in Figure 5.6. The 

transverse mass of the WW* system where the W both decay into a lepton plus neutrino is 

shown in Figure 5.7 for a Higgs mass of 115 GeV, which is the final LEP II upper mass range. 

For masses greater than this but less than ~ 200 GeV the situation in regards to the signal to 

background and size of the cross section is even more favorable. Indeed, the WW fusion process, 

with detected tag jets, is an important discovery mode for the Higgs search. It is also important to 

notice that this process depends only on the Higgs coupling to the gauge bosons, HWW, so that 

this coupling can be isolated and measured experimentally. 

 
Figure 5.6 COMPHEP diagrams for WW fusion production of W pairs. Note that there are irreducible background 
processes. In particular, note the quartic W coupling. 
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Figure 5.7: Transverse mass of the dilepton + missing transverse energy system in events with two detected tag jets. 
The Higgs resonant peak is evident above the continuum WW and other backgrounds, even for the “worst” case of a 
Higgs boson with 115 GeV mass [ref. 5 – with permission]. 

Just as an amusement, let us consider protons as sources of photons. First we can use 

Eq.5.7 to roughly estimate the cross section for ppHpppp →→ γγ using Eq.5.5 for the width 

of H→γγ . However, it is clear that the proton, because it is not a fundamental particle, has a 

“form factor” describing the reduced probability to emit a hard photon and still hold together as a 

proton. We ignore that factor, and still arrive at a very small cross section for the two-photon 

production of a light Higgs boson.  

A more careful analysis leads to a revised estimate for the cross section for a light Higgs of 
23910~ cm− which approaches viability at the LHC. These events would be spectacular, 

containing two final state protons with very small transverse momentum and, say, two b quark 

jets from the Higgs decay emitted at wide angles, with ~ 60 GeV transverse momentum each. 

There are no other final state particles, giving these events an absolutely clean and unique 

character. In addition, there may be other states that have a large two-photon formation width, 

which have larger cross sections.  

5.3.3 Associated Production – HW,HZ, Htt 

Another possible production mechanism results in a Higgs, H, produced in association with 

a gauge boson. As we can see from the COMPHEP Feynman diagrams, Fig. 5.8, the production 

mechanism involves Drell-Yan formation of a virtual W or Z with subsequent Higgs 

bremsstrahlung. A measurement of this process would clearly probe the Higgs coupling to gauge 

bosons. The cross section is, however, 10 to 100 times less than the main production mechanism, 

gluon – gluon fusion (see Figure 5.3).  
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Figure 5.8: Feynman diagrams from COMPHEP on the associated production of Higgs particles and gauge bosons. 
The process is Drell-Yan production where the off shell W or Z subsequently radiates a Higgs boson. 

The Higgs + gauge boson production process is advantageous because it improves the 

signal to background in the case of a low mass Higgs boson. However, the cross section falls 

rapidly with Higgs mass limiting the utility of this mechanism to low Higgs masses. Production 

by quarks is also more advantageous at lower C.M. energies. The favored Higgs search strategy 

at CDF and D0 will be to use associated production with Higgs decay into b quark pairs. The 

results of a Monte Carlo simulation for Higgs signal and backgrounds due to the continuum 

production of W + b pairs and other processes is shown in Fig. 5.9. 

 

 
Figure 5.9: Mass distribution for b quark pairs due to WH, WZ, top pairs decaying into W + b, and continuum W + 
b pair production. The model is for 2 TeV C.M. energy, proton – antiproton collisions at the Fermilab Tevatron 
where the production of WH by quarks is enhanced with respect to gluonic production. The expected integrated 
luminosity is ~ 20 fb-1. [ref.6 – with permission] 

At the LHC, the greater importance of gluons for light Higgs masses makes this strategy 

rather more difficult, and it will not be considered further here. 

Another process that has great promise to reduce backgrounds is the production of a Higgs 

boson in conjunction with a pair of top quarks, which exploits the strong coupling of the Higgs to 
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the top quark. The COMPHEP Feynman diagrams for gluon – gluon production of that final state 

are shown in Fig. 5.10. The cross section is rather large (see Fig. 5.3) because the couplings are 

Htt, and the large top mass means that this coupling is quite strong. A measurement of the rate 

for this process will help us probe the SM prediction for the top quark couplings to the Higgs. 

 
 

Figure 5.10: a) COMPHEP Feynman diagrams for the process, g g H t t+ → + + . The relevant Higgs 
couplings are to the top –antitop quark pair.  b) Diagrams for the similar process where the H is replaced by a Z 
gauge boson are also shown. 

The Z t t+ +  final state gives us a “control” sample because the Feynman diagrams are 

identical for the two final states and the clean detection of the Z in the di-lepton decay mode is 

well established. The cross section for the QCD background process is shown in Fig. 5.11 as 

given by COMPHEP. 

 
Figure 5.11: Cross section for g g t t b b+ → + + +  at the LHC as a function of the b pair mass, M, as given by 
the COMPHEP Monte Carlo program. The expected Higgs signal for the b pair decay mode and a 120 GeV Higgs is 
also shown as a dot. 

a)                                                                 b) 

dσ/dM 
(pb/GeV) 

M (GeV) 
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The cross section for the production of Htt with a 120 GeV Higgs mass is ~ 0.3 pb (see Fig. 

5.3). Assume all light Higgs decay solely into b quark pairs. The calorimetric mass resolution for 

reconstruction of the resonance from measurement of the two b jets is expected to be dM/M ~ 

0.06 (see Chapter 2). Assuming the entire signal is contained in 3 x dM or ~ 22 GeV, (ignoring 

the effect of the very small natural width), the signal is a resonant “bump” of height ~ 0.014 

pb/GeV. The signal to background ratio, looking at Fig. 5.11, is then reasonably favorable, S/B ~ 

1/6.  

As we will see, the QCD background for gluon – gluon production of a Higgs boson, which 

then decays into b quark pairs, is insurmountable. Using the much-improved signal/background 

ratio available in the Htt production process can attack this difficulty and thus the Higgs 

branching fraction into b quark pairs can be determined. Clearly, that is a crucial measurement 

since it tests the SM prediction for the Yukawa coupling of the Higgs boson to fermion mass. We 

need to test the SM prediction that the decay widths to fermions are proportional to the square of 

the fermion mass. 

5.3.4 Pair Production of Higgs 

The assumed interaction potential energy for the Higgs field is 422)( λφφµφ +=V , which we 

showed in Chapter 1 and Appendix A.  The parameter µ has the dimensions of mass, while λ is 

dimensionless. The vacuum exists at the minimum of this potential with vacuum 

field 2 / 2φ µ λ< > = − . Expanding around the minimum, ~ Hφ φ φ< > + , we collect terms with 

the same powers of the fields. The terms quadratic and higher in the Higgs excitation Hφ  are 

(ignoring numerical coefficients); 

 

 2 2 3 4( ) ~ [ ]H H H HV φ λ φ φ φ φ φ< > + < > +  5.9 

   

The first term is easily identified, see Appendix A, as an effective mass term, with 

)(2 ><= φλHM . Thus, the Higgs acquires a mass, but the numerical value is not predicted 

because it depends on the unknown parameter λ. For this reason, we need to adopt a wide 

ranging and flexible search strategy, one which has a good chance of success and covers a mass 

range from the lowest experimentally allowed value set by existing LEP searches, ~ 115 GeV, to 

the highest values, set by the point at which the weak interactions become strong, ~ 1.7 TeV. 

The other terms correspond to self-couplings of the Higgs. The triplet term has an effective 

coupling ~ HMλφλ ~>< , while the quartic term has, as expected, a dimensionless coupling 

~ λ . Therefore the Higgs couplings in the SM are; to gauge bosons  ~ WWMg , to fermions, 
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~ )/( WfW Mmg , triple self-couplings ~ HMλ , and quartic self-couplings ~ λ . Once the Higgs 

mass is measured we know λ and the self-couplings are completely specified if the SM is the 

correct description of Nature. Therefore, a measurement of these self-couplings would be a very 

useful check of the SM. 

The most important Feynman diagrams for Higgs pair production are shown in Fig. 5.12. 

The cross section depends on the triple coupling of the Higgs. This situation is similar to the case 

of gauge boson pair production, which depends on triple gauge couplings.  

 
Figure 5.12: Feynman diagrams, a) triple Higgs coupling and b) “box” diagram with top quarks radiating a Higgs 
boson twice, which are the most important for the pair production of Higgs bosons at the LHC [ref. 6 – with 
permission]. 

The cross section at the LHC for Higgs pairs is shown in Fig. 5.13 as a function of the 

Higgs mass. The cross section level is quite low. For light Higgs masses, the cross section is ~ 20 

fb. At design luminosity this means 2000 Higgs pairs produced in 1 year at the LHC.  

 
Figure 5.13: Cross section for the production of Higgs pairs at the LHC as a function of the mass of the Higgs boson 
[ref. 7 – with permission]. 

σ(fb) 

MH(GeV) 

a) b) 
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Experimentally clean signatures with a high enough branching ratio so that the HH signal 

can be observed at the LHC seem to be very difficult to arrange. For example, at low Higgs mass 

the decay into b quark pairs dominates. Thus there are ~ 2000 Higgs pairs decaying into four b 

quarks. However, the background of four b events from QCD sources appears to be 

overwhelming. If we use one Higgs decay to b pairs and the other decay into W*W we must pay 

for the branching ratio into W*W and the subsequent W decay branching fractions. 

At present, there is no good search strategy worked out for Higgs pairs at the LHC.  This is 

a serious shortcoming, since the SM makes an unambiguous prediction about Higgs self-

couplings, which must be checked. Work to find a strategy to measure this process continues.  In 

particular, an upgrade of the LHC with ten times more luminosity is being contemplated. This 

increase in luminosity might allow us to exploit triggerable decay modes of a light Higgs, such 

as H�W*W with subsequent leptonic decay of one W and quark - antiquark decay of the other 

W, such as W u d+ → + . 

5.3.5 Triple Gauge Boson Production 

Although not strictly part of the Higgs search, a measurement of triple gauge boson 

production is a probe of the predicted SM quartic couplings of gauge bosons. As we saw in 

Chapter 4, the presently available data from CDF and D0 contain only a small number of gauge 

boson pairs and the LEP data contain only a few WWγ events (Chapter 1). The increased 

luminosity and C.M. energy of the LHC will make the production of three gauge bosons 

experimentally accessible. 

 
Figure 5.14: COMPHEP Feynman diagrams for the production of three gauge bosons. Only those diagrams 
containing quartic couplings are shown. 

At the LHC the cross section to weakly produce W pairs directly is ~ 100 pb. The strong 

production of top pairs (thus W pairs) has a cross section of ~ 800 pb. The cross section for the 

production of the WWZ final state is ~ 3 pb, not reduced too greatly, ~Wα , below the weak W 

pair cross section because the C.M. energy is so much larger than the sum of the masses in the 

final state. Therefore, at the LHC the SM prediction for quartic couplings can be confronted very 

directly. For example for WWZ with both W decaying into leptons and Z decaying also into 
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electrons or muon pairs( )ν ν+ − + −+ + + + +" "� � � � , in one year there are ~ 1000 events assuming 

full efficiency for triggering and reconstruction.  

5.4 Higgs Branching Ratios and Search Strategy 

We now put together what we have learned about the coupling of the Higgs boson to 

quarks, leptons, and gauge bosons and what we have learned about the cross section for 

production of the Higgs by means of different production mechanisms. Depending on the rarity 

of the final state with respect to the specific backgrounds existing for that particular final state, 

different production mechanisms may be needed on a case-by-case basis if we are to fashion a 

successful search strategy. That strategy is very dependent on the unknown Higgs mass. For 

example, a basic issue is whether the Higgs mass is sufficient to use the relatively 

straightforward ZZ final state or not. Our goal is to fashion a search strategy which both can 

discover the Higgs and also learn about its’ coupling to leptons, quarks, and bosons independent 

of what the Higgs mass turns out to be. 

 Let us look at the branching fractions of a Higgs boson into different final states as a 

function of the Higgs mass. If the  decay width to a final state i is iΓ , then the total decay width 

Γ  is ∑Γi  and the branching ratio is, ΓΓ= /iiB . The branching ratios for the Higgs boson as a 

function of Higgs mass are shown in Fig. 5.15. The rapid variation with Higgs mass indicates the 

need to fashion a comprehensive search plan. 

 
Figure 5.15: Branching fractions of the Higgs boson as a function of the Higgs boson mass. [ref.8 – with 
permission]. 
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The Higgs width is very small below the WW “threshold”. The widths into quarks scale as 

the square of the quark mass. Hence the heaviest available quark pair, bb , dominates below 

WW “threshold” at a mass of ~ 160 GeV.  The charm pair branching ratio is estimated to be 
2( ) ~ ( / ) ( )c bB cc m m B bb ~ (1.2 GeV/4.5 GeV)2 ~ 0.1. The heaviest accessible lepton pair, τ, has 

a width reduced by ~ 9 relative to the b pair width because of the coupling to mass squared, (1.74 

GeV/4.5 GeV)2, and by a 1/3 color factor, leading to a rough estimate of the branching fraction 

of 1/27 = 0.037.  

Our previous estimates of 6 MeV for the b quark width and 1.16 keV for the photon width, 

lead to a light Higgs two photon branching ratio estimate of 0.00019. The gg width estimate was 

0.25 MeV or a gg branching ratio of 0.04. Comparing these “back of the envelope” estimates to 

the exact results shown in Fig. 5.15 we conclude that we roughly understand the most important 

decay modes for a low mass Higgs boson.  

Decay widths generated by COMPHEP are shown in Fig.5.16 for the most important quark 

and lepton modes. Note the linear behavior with Higgs mass, and the fact that a 6 MeV decay 

width into b pairs for a 150 GeV Higgs mass is confirmed. The width to τ pairs at 150 GeV is ~ 

0.35 MeV. The top pair width is included for completeness. Note the threshold behavior, β3 , 

which is explained in section 5.4.1. The top pair width, because the mass is so large, can be 

substantial (see Fig. 5.15). However, there is a severe strongly produced, or “QCD background” 

of top pairs, as illustrated in the cross section estimates given in Chapter 4. Therefore top pairs as 

a way to detect the Higgs will not be considered further. 

Representative decay widths for a Higgs mass of 250 GeV are given below. 

 MeVH

MeVbbH

5.0)(

5.9)(

=→Γ
=→Γ

ττ  5.10 

What about “below threshold” decays? As we mentioned in Chapter 1, below ZZ 

“threshold” there is a −+lZl  mode with an “off shell Z”, conventionally called ZZ*. The decay 

width, ΓZ ~ 2.5 GeV and the Breit-Wigner resonant mass distribution, 
2 2 2/ ~ ( / 2) /[( ) ( / 2) ]od dM M Mσ Γ − + Γ  means that the ZZ* decay rate is suppressed by a 

factor of 2~ [( / 2) /( )]Z ZM MΓ −  with respect to ZZ decays as the −+ll  mass goes off the 

resonant mass from Mz to M. Therefore, going from a ZZ decay mode at 160 GeV, with a decay 

width of 0.3 GeV (see Fig.5.17), to a decay rate at 150 GeV for ZZ*, we can expect an 

approximate decay width of 300 MeV(1.25 GeV/30 GeV)2 ~ 0.5 MeV and a WW* width ~ 600 
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MeV(1.0 GeV/10 GeV)2 = 6 MeV which is ~ the b pair width. Indeed, the below threshold 

branching fractions for WW* and ZZ* shown in Fig. 5.15 are roughly of that magnitude.  

 

 
 

Figure 5.16: Decay width generated by COMPHEP as a function of Higgs mass for a) b pairs, b) t pairs, and c) τ 
pairs. 

The widths above WW and ZZ threshold generated in COMPHEP are shown in Fig. 5.17. 

Note that the ZZ width is half that for WW as expected from Eq.5.4. 

 
 

 
Figure 5.17: Decay widths generated by COMPHEP as a function of Higgs mass for a) W and b) Z boson pairs.  

a) 

b) 

c) 

a) b) 

Γ(GeV) 

MH(GeV) 

Γ(GeV) 

MH(GeV) 
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After a steep rise from threshold, the 3~ MΓ  behavior we expect is clearly seen in 

Fig.5.17. Widths into W, Z, and top pairs at 600 GeV Higgs mass are presented in Eq.5.11. The 

width to mass ratio at 600 GeV is quite large, / ~ 0.21H HMΓ . It extrapolates to ΓH/MH ~ 1 when 

MH ~ 1.7 TeV.  

 

GeVttH

GeVZZH

GeVWWH

20)(

35)(

70)(

=→Γ
=→Γ
=→Γ

 5.11 

Of the decay modes mentioned so far, the H → γγ decay mode  is a clean method to search 

for low mass Higgs. The b pair and tau pair decay modes are also accessible at low mass if the 

ttH (associated production) and qqH (WW fusion with tag jets) production mechanisms are 

employed respectively. Above an effective threshold for ZZ* at ~ 150 GeV Higgs mass the four 

lepton mode is clean and is the process of choice. The WW decay to two leptons and two 

neutrinos does not have a sharp transverse mass peak due to loss of information about the 

longitudinal momentum of the neutrinos (Fig.5.7). Nevertheless with the use of tag jets to signal 

WW fusion production, the * ( ) ( )H W W l lν ν+ −→ + → + + +# # decay is a major “discovery 

mode” for Higgs particles with mass < 200 GeV. We expect the branching fraction of W*W will 

be the largest Higgs mode for Higgs mass above about 150 GeV (see Fig.5.15). 

The production cross section (Fig. 5.3) times decay branching ratio (Fig. 5.15) is shown in 

Fig. 5.18 for WW, ZZ and γγ decay modes assuming g-g production and leptonic decays of the 

W and Z bosons. For Higgs masses from 100 to 400 GeV the detected cross section times 

branching ratio into the two photon or four charged lepton final state is always > 10 fb.   This 

means that at least 1000 Higgs events are produced and decay into a clean, detectable final state 

in one year of LHC data taking at design luminosity. Since the four charged lepton final state is 

well measured by tracking detectors, the Z resonances will appear as prominent features, 

allowing us to cleanly extract the ZZ final state from other backgrounds. Since the ZZ continuum 

final state is only produced with a cross section of ~ pb, (see Chapter 3) we expect that for 

masses above about 150 GeV the Higgs can be readily discovered in the ZZ to four lepton final 

state. 
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Figure 5.18: Cross section times decay branching ratio as a function of Higgs mass. The present LEPII limit is 
indicated by an arrow [ref. 1 – with permission]. 

Data from electron – positron colliders presently require the Higgs mass to be above about 

110 GeV. The γγ mode is the cleanest decay mode for masses between the LEP limit of 110 GeV 

and about 150 GeV where the ZZ and ZZ* modes are difficult.  Above 150 GeV, ZZ* or ZZ is 

the mode of choice. 

The WW* or WW mode can also be used from ~ 120 GeV to ~ 200 GeV, where the large 

branching ratio into WW makes this mode attractive. The ( ) ( )l lν ν+ −+ + +$ $  final state rate 

exceeds the two photon rate for Higgs masses above ~120 GeV even though we are forced to 

require the qqH production mechanism with a rate ~ 1/10 the rate shown in Fig.5.18 in order to 

achieve sufficient cleanliness of the signal. This mode is, therefore, also a potential “discovery 

mode” in the low mass Higgs region.  

 At high masses, greater than around 600 GeV, the Higgs cross section falls so much that 

we run out of the statistics we need for a compelling discovery. The somewhat dirtier but more 

copious decay modes of Z into neutrino pairs and jet pairs are required at high mass because 

their higher branching fraction compensates for the reduced cross section.  The addition of those 

decay modes extends the discovery “reach” of the LHC up to ~ 1 TeV in Higgs mass. 

Theoretical arguments tend to require that the Higgs mass not exceed 1 TeV although they are 

not particularly crisp. Therefore, we can cover the entire mass range allowed to the Higgs boson. 
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This introduction is sufficient to sketch out the main elements of the strategy to discover 

the Higgs, whatever its’ mass. We now begin a more detailed discussion of the search strategy 

for particular decay modes and explain why a given strategy applies only over a limited range of 

Higgs mass. 

5.4.1 bb  

In general a quark - antiquark pair in a state of total spin S and angular momentum L has a 

parity, P, and charge conjugation quantum number, C, where P = (-1)L+1, C = (-1)L+S. Therefore, 

the JPC = 0++ Higgs boson decays into P wave, L = 1 pairs. This, in turn, leads to a β(2L+1) = β3 

threshold behavior for the decay width. 

We assume that the dijet invariant mass is calorimetrically reconstructed. For a Higgs mass 

of 120 GeV, the cross section is 30 pb. with a 3 standard deviation (±  1.5 σ) signal region of bb  

mass, ∆M = 22 GeV set by the experimental resolution of the calorimetry. Thus the signal 

appears as a, σ/∆M = 30 pb/22 GeV = 1.4 pb/GeV, resonant “bump” above the continuum cross 

section for the QCD production of b quark pairs (we assume that the 120 GeV Higgs b pair 

branching fraction is 1).  

The COMPHEP Feynman diagrams for the QCD production of continuum b quark pairs 

are shown in Fig 5.19.  The predicted cross section at the LHC is shown in Fig. 5.20. 

 
Figure 5.19: COMPHEP Feynman diagrams for the process g g b b+ → + + .  
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Figure 5.20: COMPHEP prediction for the production of b quark pairs at the LHC as a function of the quark pair 
mass. The dot represents the Higgs signal level for a 120 GeV mass Higgs. 

The signal is also indicated in Fig. 5.20. It is swamped by a factor ~ 1000. It is for this 

reason that we were forced to consider Htt production with subsequent H b b→ + decay, where 

the signal to background ratio is much more favorable (Fig. 5.11). Using the associated 

production mechanism, we can extract the cross section times bb  branching ratio for light Higgs 

bosons and thus measure the Higgs coupling to b quarks. 

5.4.2  τ τ+ −  

Another experimentally accessible decay mode for a light Higgs is that into τ lepton pairs.  

The COMPHEP Feynman diagrams for the production of the background continuum of τ pairs 

are displayed in Fig 5.21. Basically this background comes from Drell -Yan production of a 

virtual Z or photon which then decays into tau pairs. 

 
Figure 5.21: Feynman diagrams from COMPHEP for the Drell-Yan production of τ lepton pairs. 

The estimate we make for the Higgs signal in tau pairs is similar to that which we made for 

b pairs. At 120 GeV, assuming a branching ratio of 1/27 (see Fig. 5.15 ), we expect a resonant 

signal of 0.052 pb/GeV in a mass range of ~ 22 GeV about the central Higgs mass. The 

COMPHEP prediction for the background continuum mass distribution is given in Fig 5.22. 
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Figure 5.22: COMPHEP prediction for the production of τ pairs at the LHC as a function of the mass of the pair. 
The expected resonant signal for a 120 GeV Higgs is also shown. 

Clearly, the signal to background, S/B, ratio in this case is of order one which is quite 

favorable. That improvement with respect to b pairs occurs because the coupling for the 

background process is electroweak and not strong and because the initial state partons are quarks 

rather than the more copious gluons.  We expect that we can extract the Higgs branching fraction 

into τ pairs if the Higgs mass is low, near the minimum mass which is not already ruled out by 

LEP. That result can then be compared to the branching fraction into b pairs from Htt associated 

production. In the Standard Model all branching ratios are predicted once the Higgs mass is 

specified.  

However, the discussion of background so far applies only to direct tau pair production. 

There is also a large electroweak background due to W pair production with subsequent tau + 

neutrino decays, W ττ ν− −→ + , of both bosons. This electroweak background is also 

“irreducible”, and differs from the signal process only in the presence of additional unobservable 

neutrinos in the final state.  

In addition there are tertiary sources of background. The QCD, or strong production of top 

pairs leads to W and b pairs in the final state. The W pairs can then decay into tau + neutrino. 

This source of background can be reduced by “vetoing”, or rejecting, events with extra jets. It 

turns out that the WW fusion mechanism, with visible tag jets, is needed to supply enough 

dσ/dM 
(pb/GeV) 

M(GeV) 
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background rejection so that the tau pair in the final state from Higgs decay is visible above 

background. Thus, the tau pair branching ratio can also be observed for a low mass Higgs. 

We have so far assumed that “tau jets” can be selected with no background. This is not the 

case. A reducible background from QCD jets (e.g. gluons) exists which can also swamp the 

signal. We need a way to distinguish between QCD quark and gluon jets and tau jets.  In order to 

understand how to do that, we look at the decay modes of the τ lepton. Since it is coupled to the 

W, the first step in tau decay is a virtual decay into a tau neutrino and a W. The W then virtually 

decays into quark and lepton pairs. The leptonic decays, , eeτ µ ττ ν µ ν ν ν− − −→ + + + + , have 

small branching fractions. For the quark decays of the virtual W, the particles in the final state 

are u d+  which has the quark content of a π −  or ρ − meson. Since the tau mass is only 1.74 

GeV, it has a rather limited final state pion multiplicity. The tau hadronic decays are illustrated in 

Fig. 5.23. 

 
 

 

 

 

 

Figure 5.23: Schematic representation of the decay of a τ lepton. The final state contains a neutrino and a small 
number of charged particles, one in the case shown. The complicated “decay” of the virtual W into a quark pair and 
the subsequent quark “decay” into a pion or rho meson is indicated by a large dot. 

The τ hadronic final state is, therefore, characterized by missing energy and a “narrow” jet 

normally containing only a single charged particle. This is rather different from a gluon jet, 

where the charged multiplicity is high and no neutrinos are emitted. Using these fundamental 

differences, the background from the strong QCD processes can be reduced sufficiently that the 

search strategy using τ pairs is a valid one. 

 As an example, in Fig. 5.24 we show the result of a Monte Carlo simulation of an LHC 

experimental study of the rejection power against QCD jets as a function of the efficiency for τ 

jets. The tau jet is simply defined to be a “narrow” jet in (η,φ) space (see Chapter 2). Tracking 

multiplicity is not used at this early stage of the trigger. Nevertheless, a 60% efficiency for tau 

jets is retained while a thirty-fold rejection against QCD jets is achieved. 
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Figure 5.24: Plot of the tau efficiency as a function of the QCD background trigger rate. The background rate is a 
function of the “narrowness” of the jet that forms the trigger [CMS figure – with permission]. 

5.4.3 γγ 
The final branching mode of current experimental interest specific to low mass Higgs 

bosons is that into two photons. Basically, it has a small branching ratio but is experimentally 

quite clean. Recall that in Chapter 4 we looked at the experimental data on two-photon 

production and compared it to a COMPHEP Born approximation prediction arising from the 

reaction γγ +→+ uu .  

The resulting COMPHEP prediction for the continuum background of photon pairs at the 

LHC is shown in Fig. 5.25.  

τε
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Figure 5.25: Cross section for photon pairs at the LHC as a function of the pair mass. 

We expect the γγ mode background to be more favorable than the bb  decay mode because 

the initial state probability is smaller, g → u, and the strong production (QCD) is reduced to 

electromagnetic (QED) coupling strength, similar to the situation with tau pairs. In addition, the 

mass resolution for electromagnetic calorimetry is ~ten times better than for bb or tau pairs (see 

Chapter 2).  Therefore, in the two-photon case we can exploit the full rate of gluon-gluon fusion 

Higgs production and not be forced to use some lower rate form of associated Higgs production. 

Taking a 120 GeV Higgs mass, a 2 GeV mass “window” and a branching ratio of 0.002 

(Fig. 5.15), we expect a resonant signal in the two photon mass spectrum of (30 pb) ( 0.002)/2 

GeV = 0.03 pb/GeV. The signal is still buried by a factor  ~ 30 in the background, so there is a 

premium on obtaining the best possible calorimetric energy resolution. Nevertheless, the signal 

has a clean signature, and in the mass range just above the present experimental Higgs mass 

limit, it will be a primary search strategy to use the two photon final state. A spin one particle 

cannot decay into two photons. That is a significant restriction on the quantum numbers, since 

fundamental bosons in the SM with spin > 1 are not thought to exist. 

 There is also a reducible strong QCD background from neutral pions that decay into two 

photons. If these are not resolved, the strongly produced pion will be an additional large 

background to the photon. For a ~ 100 GeV Higgs mass, the symmetric decay to a pair of 

photons implies that the photons have ~ 50 GeV transverse momentum. These photons are 

mimicked by 50 GeV neutral pions (mass Mπ = 0.14 GeV), which subsequently decay into 
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photon – photon pairs with opening angle of about (2 / )HM Mπ  ~ 0.003 rad. If the calorimeter is 

placed at a transverse distance r ~ 2 m from the interaction point, the photons are separated by ~ 

0.6 cm at the point of impact on the calorimeter. Therefore, the “pixels” of the calorimetry (see 

Chapter 2) need to resolve clusters of electromagnetic energy with this scale of transverse 

segmentation. The LHC experiments have prepared for this challenge by employing small 

“pixels” in their electromagnetic calorimeters. 

5.4.4 WW-> ( % v)( % v) 

The production of top pairs proceeds by way of the same Feynman diagrams as the 

production of b pairs (same QCD dynamics because all quarks have the same color charge). 

Therefore, aside from kinematic effects due to the difference in mass both processes should have 

the same cross section. The COMPHEP prediction for top pair production at the LHC is shown 

in Fig. 5.26 as a function of the quark pair mass. The cross section is indeed the same as that 

shown in Fig. 5.20 at high pair masses, above about 500 GeV.  

 

 
 
Figure 5.26: Cross section prediction by COMPHEP for the direct production of top pairs at the LHC as a function 
of the pair mass. 

These strongly produced top pairs lead to a large number of W pairs, since the top decays 

almost totally to W + b. These W pairs are a potential background if Higgs searches are 

performed searching in the WW or W*W final state. As we mentioned previously, the WW 

fusion mechanism with detected tag jets is used to make the Higgs decay to W pairs accessible to 

experiment by increasing the signal to background value. The existence of extra b jets in the 

QCD produced top pair background is exploited by imposing a “veto” on additional jets in the 

event. Using this veto cut, the W pairs from top pair decays can be strongly suppressed. 
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There are also weakly produced W pairs (see Chapter 4), which have a somewhat smaller 

cross section. However, they are irreducible and form a continuum background for Higgs 

searches in WW final states (see Fig. 5.7). The cross section as a function of the W pair mass at 

the LHC is shown in Fig. 5.27. In Fig. 5.26 the cross section is 1 pb/GeV at a top pair mass of 

600 GeV. This crudely compares to the 0.04 pb/GeV mass distribution for a WW mass of 300 

GeV in Fig. 5.27. Therefore, if we can reduce the top pair background by a factor > 25 by 

vetoing on extra jet activity, we can concentrate on the weakly produced irreducible W pair 

background. 

 

 
 
Figure 5.27: Cross section as a function of W pair mass for WW production in 14 TeV p – p collisions at the LHC. 

Clearly it is of interest in itself to measure the production of W pairs. The cross section 

depends on the γWW and WWZ couplings, which are specified in the SM. The improved 

Tevatron experiments currently taking data will, however, make these measurements well before 

the LHC starts taking data. 

The W*W and WW decays into two charged leptons and two neutrinos can be used to 

discover the Higgs boson after the reducible W pairs arising from top pair production have been 

removed, because the irreducible continuum of electroweakly produced W pairs is sufficiently 

small that the Higgs signal can be extracted (see Fig. 5.7). As with many of the other decay 

modes, the WW fusion mechanism must be used with explicitly detected tag jets in order to 

reduce backgrounds to acceptable levels.    
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There is also information contained in the correlation between the directions of the charged 

leptons. In the Higgs rest frame, angular momentum conservation for a spin zero Higgs requires 

the two W to be either both left handed, WLWL , or right handed as shown in Fig. 5.28. The 

convention is that the spin vector (thick arrow) appears below the momentum vector (thin arrow) 

for each particle. 

 

 
 
Figure 5.28:  Spin correlations in WRWR Higgs decays. The momentum direction is indicated by the single arrows, 
while the spin direction is shown by the double arrows.  

 

The decays of the polarized W follow from the (V-A) nature of the weak interactions. For 

leptons, the particles are left-handed while the antiparticles are right handed. The overall effect is 

to make the charged leptons travel in the same direction. A vector resonance weakly decaying to 

W pairs would clearly not have the same charged lepton correlations. Therefore, a measurement 

of the momentum correlation of the charged lepton pair yields information on the spin of any 

observed resonance and may be used to enhance the cleanliness of the signal.  

5.4.5 ZZ → 4 %   

The experimentally cleanest decay mode for the discovery of the Higgs boson is the decay 

to Z pairs with subsequent charged lepton decays of the Z. The ZZ � 4 %  branching ratio 

exceeds the two photon branching ratio for Higgs mass > 150 GeV (see Fig. 5.18). The signal to 

background ratio in the ZZ final state is also much better. Therefore, for a Higgs mass > 150 

GeV the final state of choice contains four charged leptons from ZZ or ZZ*.  The leptons are 

well measured in the tracker (see Chapter 2) and form a resonant state that is quite narrow 

(ΓZ/MZ ~ 2.5 GeV/91 GeV = 0.027). The Z pairs in turn have an excellent mass resolution. This 

decay mode is therefore called the “gold plated mode” for the Higgs search. 
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A schematic view of four electron and four muon events in the proposed CMS detector at 

the LHC is shown in Fig. 5. 29. When low transverse momentum particles are not shown, as in 

the electron case, the event looks quite clean, containing only the four electrons and a recoil jet. 

In the muon case, the muon chambers themselves largely see only the four isolated muons, again 

leading to a clean analysis. 

 
 

 

Figure 5.29: Plot of a a) four electron and a  b) four muon Monte Carlo event arising from a Higgs decay into Z pairs 
in the CMS detector at the LHC. In the (r,φ) view only high PT particles are plotted. [ref.9 – with permission]. 

For masses of 150, 300 and 600 GeV, the branching ratio into ZZ* or ZZ is ~ 0.1, 1/3, and 

1/3. The Higgs mass window due to the error on the tracking measurements of the lepton 

momenta is 2, 4, and 8 GeV while the Higgs natural width is 1.6, 13, and 105 GeV. The natural 

width dominates at high mass as expected. This leads to a total, three standard deviation, Higgs 

mass window of  8, 45, and 330 GeV, or a cross section enhancement of, σ/∆M, of  0.025, 0.074, 

0.002 pb/GeV in the ZZ mass spectrum.  

a) b) 
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The ZZ continuum background is due to Drell – Yan  electroweak production of gauge 

pairs, similar to the WW electroweak background.  The cross section for ZZ production is shown 

in Fig. 5.30 as calculated by COMPHEP for p – p production at 14 TeV. The expected signal is 

shown schematically for a 300 and 600 GeV Higgs boson. Clearly, the signal to background ratio 

is quite favorable in the four lepton final state because the background is due to a weak 

interaction production process. At higher masses, the search will become rather more difficult, 

simply because the Higgs becomes rather broad and the cross section falls rapidly with mass. 

 

  
 

Figure 5.30: Cross section for ZZ production at the LHC as a function of the ZZ invariant mass. Also indicated are 
the signals expected for 300 GeV and 600 GeV Higgs bosons decaying into Z pairs. 

The integrated luminosity at design operation is 100 fb-1per year. The cross section times 

branching ratio for a 600 GeV Higgs decaying into ZZ is ~ 0.7 pb. The decay rate for Z into 

electron or muon pairs is 6.7 %, or a 44 fb cross section into four leptons. Thus, with no 

background and perfect detection efficiency, we get 4400 signal events or a 66 standard 

deviation signal.  

CMS and ATLAS have made detailed studies and will see a ten standard deviation resonant 

signal in one year of operation for most of the mass range where ZZ or ZZ* measurements are 

relevant. A complete Monte Carlo study of the CMS detector yields the mass plots, which are 

similar to that given in Fig. 5.30, shown in Fig. 5.31.  The Higgs masses, which were studied, 

were 300, 400, 500, and 600 GeV. The plots are for different total integrated luminosities but for 

500 and 600 GeV the design luminosity for one “LHC year” was assumed. Clearly, in all cases a 

distinct and highly significant resonant peak is observable. 
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Figure 5.31: Monte Carlo predictions for the number of detected events in the ZZ to four lepton decay channel for 
Higgs masses of 300, 400, 500, and 600 GeV in the CMS detector [ref. 8 – with permission]. 

For Higgs masses < 200 GeV, we expect to be able to extract resonant signals into several 

final states, as we have demonstrated above. The resonant mass of the Higgs boson will be well 

measured at low mass where the natural width is dominated by detector resolutions. However, 

the natural width will not be well measured, because the experimental spectrum is not strongly 

dependent on the very narrow natural width. At high mass the natural width dominates over 

instrumental resolutions and can be well measured at the 5% level. 

 A Monte Carlo study by the ATLAS collaboration of the expected error on the total Higgs 

decay width and some selected partial widths is shown in Fig. 5.32 for Higgs masses below 200 
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GeV. The gluon partial width comes from measurements of the gluon fusion production, while 

the γ, and τ partial widths are determined by using final states with those particle pairs. The 

partial width into b pairs is not shown because the signal extraction is limited to rather low 

values of the Higgs mass. The WW fusion production of Higgs followed by the WW* decay 

depends only on the HWW coupling, which allows us to cleanly extract the W partial width. 

 

Figure 5.32: Expected error on the Higgs decay width and some partial widths after three years of LHC design 
luminosity delivered to two experiments. At high masses, a 5% determination is expected, while below ~ 200 GeV 
the errors are > 10% [ref. 10 – with permission]. 

We see how the mass, total width, and some partial widths can be determined. What about 

quantum numbers? We can get some additional information on the spin, J, and parity, P, 

quantum numbers of the Higgs state from an analysis of the correlations among the ZZ decay 

products.  It’s amusing that, early in the study of high energy physics there was a  “classic” pion 

parity experiment where the neutral spinless pion was observed to decay electromagnetically into 

two vector photons which then decay (rarely) into electron – positron pairs, 
o e e e eπ γ γ + − + −→ + → + + + . The analogy is to a neutral Higgs decaying electroweakly into 

two vector Z bosons and thence to four charged leptons. 
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For spin zero and positive parity the polarization vectors, ε
&

, of the photons are positively 

correlated and this is reflected in the alignment of the decay planes of the electrons. The opposite 

is true for the case of negative parity. The decay plane is that plane defined by the electron and 

positron momentum vectors. The parity is determined by looking at the correlation between the 

two decay planes. For spin zero P= +, the decays have the decay planes aligned, while for P = -, 

the decay planes are orthogonal. 
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The correlation of the lepton decay planes for spin zero and positive and negative parity is 

shown in Fig. 5.33 for a 280 GeV Higgs mass, where the angle φ is the azimuthal angle between 

the decay planes. Clearly, for positive parity the planes are preferentially aligned, while for 

negative parity, they are orthogonal. 

 

Figure 5.33: Distribution of the azimuthal angle between the leptonic decay planes of the two Z bosons in the 
decay, H -> ZZ of a 280 GeV Higgs in the case of scaler (solid line) and pseudoscaler (dotted line)  bosons. 
[ref.11 – with permission] 

For a light Higgs mass, assume we have observed a two-photon decay, so that the spin is 

known to be zero. A scalar decaying into two vector gauge bosons is allowed in an S wave, or 

zero orbital angular momentum state. The Z polarization can be longitudinal (L) or transverse 

(T), since the Z has mass while the massless photon is transverse. The decay distribution of the Z 
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is, 
2 20 2 1 2

1 1~ 1 cos , ~ sinY Yθ θ+ , for transverse and longitudinal Z polarization, 

respectively, where the spherical harmonic is m
lY  which allows us to fit the distribution for the 

fraction of ZL and ZT in the decays. There is a SM prediction for the relative amount of 

transverse and longitudinal polarization of the Z.  
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The two-lepton decay of the Z serves as the analyzer of the Z polarization just as in the 

case of the two-lepton decay of the photons. A fit to the decay angular distribution will 

determine the longitudinal and transverse components of the Z spin and thus test whether the 

Higgs quantum numbers are as predicted by the SM. At small Higgs mass, ~ 2H WM M , the T to 

L ratio is ~ 2, while at large Higgs mass, the Z will be completely longitudinally polarized. 

5.4.6 ZZ → 2'  + 2J 

For masses > 600 GeV, larger branching ratio decay modes are needed due to rate 

limitations. We simply will not get enough events in a few years to be able to have a statistically 

compelling discovery. One possibility is to use the quark decays of the Z. The signal then 

appears in the two lepton, ' , + two jet final state. The signal to background ratio is worse 

because the background from Z + dijets due to QCD radiation in single Z processes is an added 

continuum contribution. The two-jet mass resolution window for the other Z decay is also rather 

larger than the leptonic Z decay mass window. Because this final state is used at large Higgs 

masses where the natural width dominates over the detector resolution, using calorimetric mass 

determination is not very costly in terms of sensitivity. 

 A Monte Carlo model of such a signal event is shown in Fig. 5.34 for a typical LHC 

detector. Suffice it to say that a Higgs signal can still be observed at large Higgs masses even 

with the enhanced background. Note the small opening angle for the jet pair due to Z q q→ +  

decay. As discussed in Chapter 2 the angular segmentation of the hadronic calorimeter was 

chosen to resolve the Z decay into two distinct jets for Higgs masses up to 1 TeV. The event 

shown here illustrates why that choice of “pixel” size was made. 
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Figure 5.34: Monte Carlo representation of an 800 GeV Higgs decay into Z pairs, where one Z decays into an 
electron – positron pair and the other decays into a quark – antiquark pair appearing as two jets in the CMS detector. 
Note the “noise” in the calorimeters and tracker due to minimum bias “pileup” events [CMS figure – with 
permission].  

5.4.7 ZZ → 2ν  + 2J 

A still larger branching ratio final state occurs when one Z decays into a neutrino – 

antineutrino pair and the other decays into a quark – antiquark pair. In that case, we do not have 

the constraint that both pairs must be measured to have the resonant Z mass as we had for four 

leptons and, at rather worse mass resolution, for two leptons and two jets. Nevertheless, we can 

require a substantial missing energy and a large transverse mass for the first Z and a dijet mass ~ 

the Z mass for the jets. Also, there is no invariant mass peak for the Higgs, but only a broad 

transverse mass enhancement. Therefore, the mass determination is not very good. Nevertheless, 

at these high masses the state is very broad anyway and the signal to noise ratio is still favorable 

since the backgrounds fall rapidly with increasing mass. 

At some point we simply run out of events, even with the very high luminosity available at 

the LHC accelerator. The four jet final state is basically swamped by QCD strong production, 

and cannot be used in a Higgs search. Therefore, the falling cross section at high mass eventually 

makes the Higgs unobservable. This problem is exacerbated by the fact that the Higgs width is 

also rapidly increasing with mass. The result is that the Higgs search terminates at a mass ~ 1 

TeV for the LHC operating at design luminosity. If higher luminosities become available with 

“upgrades” to the LHC accelerator and to the detectors, the mass” reach” for the Higgs search 

will be extended beyond 1 TeV. 
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5.5 Luminosity and Discovery Limits 

We have seen that the Higgs decay into b quark pairs is difficult to extract without the 

added background suppression achieved by using associated production with top pairs. This is 

not always the case. In the case that supersymmetry (SUSY) is a valid symmetry of Nature (see 

Chapter 6) a SUSY Higgs can have enhanced decay widths into b quark pairs. In some cases WH 

associated production can then be used to suppress backgrounds, allowing us to extract a 

resonant signal. The calorimetric energy resolution must be minimized as it directly defines the 

signal to background ratio. The results of a Monte Carlo study in this situation are shown in Fig. 

5.35. The predicted experimental mass spectrum of signal plus background is shown for different 

SUSY parameter values, which, in turn, influence the b quark branching fraction and decay 

width.  

 
Figure 5.35: Mass distribution for b quark pairs for both background events and Higgs signal events for SUSY 
Higgs and for different values of the SUSY parameters with Higgs masses of a) 90, b) 100, c) 120, d) 120 GeV  [ref. 
12 – with permission]. 

The width of 22 GeV, which is needed to contain the signal within the experimental mass 

resolution, is ~ five bins in Fig. 5.35. Hence, what we used in our previous estimations of 

calorimetric resolution is, if anything, an underestimate since there are other errors entering into 

the contribution of the mass resolution of a jet. Still, it is a good starting point. 
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The subject of how to search through the full parameter space of even some simple SUSY 

theories has a very extensive literature. The Higgs boson is no longer the simple object that we 

have assumed in the case of the SM.  We continue, however, to concentrate on the simpler 

question of how we design a search for the SM Higgs boson using our accumulated knowledge 

obtained in Chapters 1-4. Some comments on searches for explicitly supersymmetric particles 

will follow in Chapter 6. 

The figure of merit which is quoted in Fig. 5.35 is the significance or the number of signal 

events ( = S) divided by the square root of the number of background events = B, or BS/ . In 

the limit of large numbers of events and small S/B ratio, this indicates the number of standard 

deviations by which the signal exceeds a statistical fluctuation of the background. The one 

standard deviation probability is 68% , two is 90% and three is 95%. What is plotted in Fig. 5.36 

is the significance, or BSS +/ , as a function of the Higgs boson mass for measurements using 

different final states during one year of operation at one third of design luminosity at the CMS 

and ATLAS detectors. If the background is much larger than the signal than the significance 

becomes BS/  as in Fig. 5.35. If there is no background then the expression in this limit 

becomes S  which we have already quoted. 

 A summary for the Higgs search that we have outlined above is shown in Fig. 5.36. 

Basically, the CMS and ATLAS detectors are designed to discover the SM Higgs for all masses 

< 1 TeV in four months of full luminosity operation. This is assumed to occur if a significance of 

about five standard deviations is achieved. 

Clearly, the main final state which is used for Higgs discovery over a wide range of Higgs 

masses is ZZ or ZZ* → 4( . At high masses larger branching ratio decay modes are needed and 

two leptons + two jets or two charged leptons + two neutrino final states are used. At low masses 

the two photon final state is used. The W*W final state (in qqH), where both W decay into a 

lepton plus a neutrino, provides the largest sensitivity for Higgs masses ~ 2 WM . Also at low 

mass, we have shown the bb final state (in ttH).  The electron - positron collider LEP II has 

already set a mass limit ~ 110 GeV. 
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Figure 5.36: Expected significance at the CMS and ATLAS experiments as a function of the Higgs mass for 1 year 
of data taking at 1/3 of design luminosity. The LEP II limit is indicated by the arrows.  [ref.1 – with permission] 

The LHC experiments and the LHC accelerator itself have been designed specifically to 

discover the Higgs boson that is hypothesized to exist in the SM. We expect that experiments at 

the LHC will discover the SM Higgs if it exists with a mass < 1 TeV in the first year of data 

taking. Depending on the mass of the Higgs boson, the width will also be determined, as will the 

branching fractions into a few final states. This information should help us to determine the 

interactions of the Higgs boson with quarks, leptons, and gauge bosons and compare them to the 

predictions of the SM. Once the Higgs mass is known, everything is predicted in the SM, so that 

any deviations would allow us to conclude that new physics is making an appearance at this new 

high mass scale. 

5.6 Lower Limit on Higgs Mass 

 We have argued that at high masses the Higgs boson ceases to exist as a distinct resonant 

state because the width is ~ the mass at a mass of ~ 1.7 TeV. There exists another argument, 

which indicates a still lower mass limit for the Higgs boson. 

Recall from our discussion in Appendix A that the Higgs potential is V(φ) =  µ2 φ2  + λ φ4. 

There is a minimum at <φ> which is nonzero causing “spontaneous symmetry breaking”. We 

then expand about the potential energy minimum, Hφ φ φ= < > + in order to examine the 

behavior of the field excitations – the Higgs quanta. The curvature of the potential gives the 

Higgs mass, since the mass term in the Lagrangian density appears as, 2 2M φ−  and 
2 2 2(1/ 2) /V Mφ∂ ∂ = − .  
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The parameter λ defines the dimensionless quartic Higgs coupling. As shown in Appendix 

D, the couplings that appear in the fundamental Lagrangian “run” with the mass scale due to 

higher order quantum corrections. Thus the parameter λ  too is a function of mass scale and 

varies logarithmically just as the SM coupling constants do. We simply assert that the behavior 

of )( 2Qλ  has the same behavior with mass scale as the fine structure constants (see Appendix 

D), 2( )Qα . 

 
2 2 2 2 2 2

2 2 2 2 2

( ) ( ) /[1 (3 ( ) /8 ) ln( / 2 )]

1/ ( ) 1/ ( ) (3/8 )[ln( / 2 )]

Q Q

Q Q

λ λ φ λ φ π φ
λ λ φ π φ

= < > − < > < >
= < > − < >

 5.14 

The effective parameter, 2( )Qλ , increases with Q2. If we require that λ(Q2) be well behaved 

from <φ> = 176 GeV up to a scale Λ, where 1/ λ(Λ2) = 0 (strong Higgs self coupling at the mass 

scale Λ), then 1/ λ(<φ>2) ~ 3/8π2ln(Λ2/2<φ>2).  

Relating the parameter λ to the Higgs mass (see Appendix A), ><= φλ2HM , we then 

have a constraint on the maximum value of the Higgs mass as a function of the mass scale where 

the Higgs quartic coupling constant diverges. 

 )2/ln(3/4~)( 22
max ><Λ>< φφπHM  5.15 

This constraint has no content unless we know at what scale the quartic couplings become 

strong. We show the scale dependence of the maximum Higgs mass in Fig 5.37. If the scale is ~ 

1 TeV then there is little new added to the 1.7 TeV limit we already have. On the other hand, if 

the scale is ~ 1016 GeV (see Chapter 6, the SUSY grand unified scale), the limit is reduced to ~ 

160 GeV. Numerically )2/ln(/26.1~)( 22
max ><Λ φTeVM H . If there is no new physics up to 

the scale of grand unification, then a light Higgs mass is favored. 
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Figure 5.37: Maximum Higgs mass as a function of the scale where the Higgs self-coupling become strong. The 
dot indicates the approximate GUT scale (see Chapter 6) 

Remember that at this mass the Higgs is narrow, has a reasonably large cross section, and 

has several accessible decay modes - b pairs (in ttH), τ pairs (in qqH), photon pairs, WW* (in 

qqH) and ZZ*. Thus, if we accept that the grand unified mass scale is relevant we expect the 

Higgs search to be very successful at the LHC and perhaps be accessible to CDF and D0 at the 

Fermilab Tevatron. Recall that a low mass Higgs is also favored by the present precision 

electroweak data (see Chapter 4).  
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Exercises: 
1. Estimate the top pair cross section using Eq.5.2. Compare to the COMPHEP results shown 

in Chapter 4.  

2. For a luminosity of 34 210 / seccm , and a time interval for 1 year of sec10~ 7 , estimate the 
number of 120 GeV Higgs, the number of W, and the total number of produced inelastic 
events at the LHC. 

3. Show that the ratio of Higgs decay widths for WW and quark pairs is 
2)/(6/1~/ qHqqWW mMΓΓ . Therefore, above threshold for WW the gauge boson decays 

dominate. 

4. Explicitly evaluate the widths into gluon pairs, b pairs and photon pairs for a 150 GeV 
Higgs. 

5. Find 0( / ) yd dyσ =  numerically assuming gluon-gluon fusion production. 

6. Explicitly evaluate the WW decay width for a Higgs of 150, 600, and 1200 GeV. 

7. Work out the ratio of WW fusion to direct production of Higgs bosons.  

8.    Find the triple and quartic couplings of H by explicitly expanding the Higgs potential about 
the vacuum expectation value of the Higgs field. 

9. Reproduce the distribution displayed in Fig. 5.20 using COMPHEP. 

10. Reproduce the estimates of the signal shown in Fig. 5.10. Add a point for a 1000 GeV 
Higgs. Is it harder to find a 1 TeV Higgs from the point of view of S/B compared to a 300 
GeV Higgs? 

11.   Evaluate Eq.5.15 for two mass scales, one appropriate to electroweak symmetry breaking   
and one appropriate to grand unified theories (Chapter 6), GeV163 10,10~Λ  

12.   Use COMPHEP to look at the “tag jet” process u,d->d,u,H. Check the diagrams. Find the  
cross section for a 200 GeV Higgs mass and compare to the predictions given in Fig.5.3. 

13.  Use COMPHEP to display the rapidity distribution of tag jets. Compare to the plot shown in 
Chapter 2. 

14. Use COMPHEP to examine the process u,U->Z,H,H. Is the cross section large enough to be 
observable at the LHC? 

15. Use COMPHEP to explore the Higgs decays, H->2*x. Find the total width and branching 
fractions for several different masses. Remember COMPHEP has only “direct” decays. 
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6. SUSY and Open Questions in HEP 
 

 “Something is happening and you don’t know what it is, do you Mr. Jones” - Bob Dylan 

“Toto, I’ve a feelings we’re not in Kansas anymore” - Judy Garland  

 

In the first five chapters we have focused rather tightly on the first two questions of the 

dozen raised at the end of Chapter 1. Those questions had to do with the spontaneous breaking of 

electroweak symmetry, which is assumed to be due to the vacuum expectation value of the Higgs 

field. That field gives the W and Z (and photon) a specified mass, WWZ MM θcos/= . It also 

gives masses to all the fermions of the SM via Yukawa couplings, but with unspecified values.  

In addition, the SM predicts all the interactions of the Higgs once the mass is known. Since 

the mass is limited from below by experimental searches at LEP II to be > 110 GeV, and from 

above by general considerations to be < 1 TeV, we could map out a search strategy for the Higgs 

which almost guaranteed success at the LHC, assuming that this particle actually exists. Indeed 

the LHC and its’ experimental facilities are being constructed precisely for this purpose.   

For a known Higgs mass, the width is predicted and can be compared with experimental 

data. We need to also measure the production cross section, both single and associated (H 

produced in association with W, Z, top pair ). That will inform on the couplings of the Higgs to 

gluons, top quarks, and gauge pairs. We need to measure as many decay branching fractions as 

possible. Those data will tell us if the Higgs couples to the fermion mass as predicted in the SM. 

If the Higgs is heavier, the predicted coupling to gauge boson pairs must also be verified.   

If it is a possible measurement, Higgs boson pair production will tell us about the triple 

self-coupling of the Higgs bosons. Observation of the decay to two photons would rule out a J = 

1 Higgs state. The angular distribution of the gauge pairs in Higgs decays, if kinematically 

available, allows us to determine the quantum numbers of the Higgs parent near the threshold for 

gauge pair decays. All this systematic study will allow experimenters at the LHC to determine 

whether a newly discovered resonant state at a given mass has some or all the predicted 

properties of the Higgs boson specified in the SM. 

In this Chapter we will briefly mention the remaining ten questions raised at the end of 

Chapter 1. As we look into the outstanding questions for high energy physics, we will see that 

their explication might lead to additional experimental signatures that will also be closely 

examined at the LHC. These issues clearly go beyond the SM. Most high energy physicists think 
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it unlikely that the search for the Higgs outlined in Chapter 5 will result in the discovery of a 

single resonant state at the LHC with all the properties of a fundamental scalar field. That 

judgment can only be tested experimentally. However, it is based on taste rather than opinion. 

The plethora of arbitrary parameters which exist in the SM and the fact that the SM is not stable 

under quantum radiative corrections arising from the existence of a large Grand Unified Theory 

(GUT) or Planck mass scale argue that the SM is not a fundamental theory but an incomplete and 

therefore effective one. 

3 - Why are there 3 and only 3 light “generations”? 

6.1 Generations 

The SM is widely felt to be incomplete because, among other difficulties, there are many 

arbitrary parameters with regularities among them that are not explained. Of the many 

parameters, most are related to fermion masses and quark weak mixing matrix elements. The 

fermion masses have no explanation in the SM. In particular, the weak doublets of quarks and 

leptons of the same generation have comparable masses. Does that indicate a deep relationship 

between quarks and leptons and hence the strong and electroweak interactions? The existence of 

a GUT scale, as we discuss later in this Chapter, where the interaction strengths of the strong and 

electroweak interactions are the same is additional evidence for this view.  

The quark and lepton weak doublets of the SM, see Fig.1.2, are replicated three times with 

particles identical save for their mass. Why does this happen? Clearly we are not looking at a 

typical excitation spectrum, e.g. the hydrogen atom Balmer series. The dynamics must be quite 

unusual to have a spectroscopic series with only three terms. We also do not understand what 

forces are responsible for this mass splitting between generations, having exhausted the known 

forces (ignoring gravity) with the SM. 

What is the evidence for a limited number of light generations?  The primordial abundance 

of deuterium is related to the number of generations of neutrinos when nucleosynthesis models 

are used in the standard Big Bang cosmological models. The data indicate that there are three 

generations of light neutrinos. There is also a precision measurement available from the LEP 

collider. The Z decay width has been measured to high precision (see Chapter 4). The Z boson 

decays into quark and lepton pairs, with no flavor changing modes allowed. 

  νν,, −+→ llqqZ  6.1 
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The neutrinos are not detected. Measuring the “invisible” Z decay rate and dividing by the 

rate into neutrino pairs (see Chapter 4), we obtain the number of light neutrino species. The 

conclusion is that there are three and only three light species of neutrinos (below Z threshold). 

This finding is consistent with the one made from the prior but weaker measurement derived 

from the primordial deuterium abundance. 

  Nν = 3  6.2 

 

These experimental facts have little or no known explanation. The dynamics, which leads 

to the existence of three generations, is something where we have almost no clue. Therefore, this 

question has no answer at present, and the paucity of hints indicates we are unlikely to find an 

explanation in the near future. The answer to the question put by  I. I. Rabi when the muon was 

discovered, “who ordered that?”, continues to elude us even after many years.  

The quarks and charged leptons display a similar “generation” structure. There are three 

"generations" of quarks and leptons that have identical interactions and different masses. Note in 

Fig. 6.1 that there are 5 orders of magnitude in mass from the electron to the top quark (see Fig. 

1.1 also). In fact what we mean by a generation is simply the replication of the lowest mass 

electron, electron neutrino and up quark, down quark electroweak doublets of ordinary matter 

that recur at a higher mass. Our “ordinary” world of matter consists of bound states of the first 

generation quarks, held together by gluons.  
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Figure 6.1: Plot of the masses of the charge 2/3 and charge –1/3 quarks and the charge 1 leptons. For this plot the 
neutrinos are assumed to be massless and are not shown. Also shown are the Z mass, and the Higgs vacuum field to 
set the electroweak scale. 

We see that the notion of generations is rather vague. The mass of the top is 175 GeV 

which is widely split from its doublet partner the b quark, at ~ 4.5 GeV mass. The third 

generation lepton partner, the τ lepton at 1.78 GeV is separated by a factor of ~ 3 in mass from 

the b quark (see Appendix D) and a factor ~ 100 from the top quark. As we can see in Fig. 6.1 

the splits in mass within generations one and two are also considerable. 

The “dynamics” of generations is rather unusual. Not only is the series of “ spectral lines” 

terminated at three, but also the dependence of mass on “generation quantum number” (Fig. 6.1) 

is, very approximately, exponential.  There must be a rather singular force in order to cause such 

an odd spectroscopy. 

4 - What explains the pattern of quark and lepton masses and mixing? 

6.2  Parameters for Mixing 

As we will mention later, there must be CP violation for the Universe to consist largely of 

matter without significant antimatter. Within the context of the SM the smallest number of 

generations allowing for a complex weak mixing matrix, qqV ′  - see Appendix A, (CKM Matrix) 

is three. Thus, the most economical number of generations which is complex enough to admit of 

CP violation – i.e. a complex mixing matrix – in the SM also agrees with Nν . However, it now 

seems that, in detail, the SM, in concert with Big Bang cosmology does not have sufficiently 

m(GeV) 

Generation number 
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strong CP violation to account for the observed baryon to photon ratio of 910~ − . The condition 

of CP violation is necessary, but the SM is not sufficient. 

In the strong interaction the colored quarks and gluons are flavorless. Therefore, the weak 

flavor quantum numbers must be produced in pairs since quark flavors are conserved in strong 

interactions.  The flavors change in charge changing weak decays, the most familiar being beta 

decay, which at the quark level is eu d W d e ν+ +→ + → + +   

Over many years experiments have been performed to determine the elements of the matrix 

qqV ′  characterizing the strength of the couplings in the weak decays of quarks. The matrix is 

completely phenomenological, since we are again ignorant of the dynamics that differentiates the 

weak eigenstates from the strong eigenstates. It is like knowing the D
�

 and E
�

vectors in 

electromagnetism without having some fundamental understanding of the polarization of the 

medium. The CKM matrix, qqV ′  is shown approximately; 
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This matrix defines the strength of the weak decay transitions between the strong quark 

eigenstates. The matrix is unitary, which implies that the strength of coupling is universal, as is 

appropriate in a gauge theory (see Appendix A). The complex parameter p = ρ + iη is not yet 

well measured (see Fig. 6.2). Numerically the parameters have values of θc ~ 0.2 and A ~ 1. 

The decay amplitude is proportional to the quark mixing matrix, the decay rate to the 

square. Clearly, the u � d + W+, c � s + W+ and t � b+ W+  “diagonal” transitions are the 

strongest (the jargon is “Cabibbo favored”). Why is V approximately diagonal? Why is the b → 

c + W- off diagonal transition so slow, 42 ~~)( cqqVqq θ′′→Γ , with respect to the off diagonal 

transition s → u + W-, 2~ cθΓ ? Is V complex? Unitary? Does Im(p) "explain" CP violation? 

What is the dynamics of weak decays between generations? How can we compute the elements 

of V? Why is θc ~ 0.2? There is clearly a pattern here, but we simply have no clue yet as to how 

to answer any of the questions that we can so easily raise. 
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The measurements of the complex elements of the “unitary triangle” are of an accuracy 

indicated in Fig. 6.2. At the present level of precision, the triangle is closed, indicating no need 

for new physics beyond the SM. Clearly, with a major experimental effort mounted at several 

accelerators, the data will improve significantly in the near future. Just now, we cannot draw a 

definitive conclusion about CP violation. 

 
Figure 6.2: Experimental data on the elements of the CKM matrix contributing to the “unitary triangle”. The 
elements plotted are defined to be,  p = ηρ i+ , where p is defined in Eq. 6.3 [ref. 1 – with permission]. 

There is a major experimental effort to study weak decays at electron – positron colliders. 

The aim of this research is to map out the complex elements of the mixing matrix much more 

accurately than they are presently known in order to start to answer some of these questions. The 

current point of attack is to determine the p parameter and therefore see if the decays of 

composite hadrons containing b quarks have CP violating effects that can be consistently 

explained solely by the mixing matrix, qqV ′ , of the SM without any new Physics contributions.  

5 - Why are the known mass scales so different? ΛΛΛΛQCD ~ 0.2 GeV < <φφφφ> ~ 174 GeV << MGUT ~ 
1016 GeV < MPL ~ 1019 GeV  

6.3  Mass Scales 

The QCD scale is that mass when strong forces become strong.  It is of the same order as 

the meson (qq  bound states) masses, as might be expected because the hadrons are states bound 
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by the strong force. We know that the strong force gets stronger as the mass decreases, leading to 

complete quark and gluon confinement. 

The next scale up in mass is the Higgs electroweak (EW) vacuum expectation value, which 

is ~ the W and Z mass scale.  The final “well established” energy scale which characterizes a 

“known” force is gravity, which has an energy, UG(r) = GNM2/r, to be compared to 

electromagnetism, UEM(r) =  - e2/r. Gravity becomes strong when the “fine structure constant” for 

gravity, cMGN �/2  ~ 1, at the “Planck mass”, NPL GcM /�= , where GN is Newton’s universal 

gravitational constant. We should be aware that, since we do not have a renormalizable quantum 

theory of gravity, we cannot reliably extrapolate classical Newtonian gravity up to the Planck 

mass. 

 Gravity is not incorporated in the SM. Its inclusion would exhaust the known basic forces 

that we have observed so far. What explains the enormous “desert” - a factor 1017 between the 

electroweak scale and the Planck scale? It is, in fact, very difficult to maintain such vast 

difference in scales in a quantum field theory because of radiative corrections.  

How, indeed, can the scales remain stable in the presence of quantum loop corrections? 

This is called the “hierarchy problem”. A dimensional argument shows that, without some 

tinkering, the Higgs mass suffers an enormous shift in magnitude due to graviton (the postulated 

spin 2 quantum of gravity) loops, 2 2~ ( / )( )H PLM Mδ α π . It is clearly necessary to explore the 

connection between the “low” mass scales for strong and electroweak interactions and the high 

mass scale characteristic of gravity. The SM is not protected against large radiative corrections 

feeding down from this high mass scale. Many physicists feel that this problem by itself shows 

that the SM is not a consistent and complete theory. 

6.4  Grand Unification 

Only recently we found out that the weak interactions are not fundamentally weak, but had 

the same intrinsic strength as the electromagnetic interactions. They appear to be weak because 

they are confined to short distances, ~ /W Wc M� � , by the large masses of their force carriers. 

Therefore, beta decays, which have energy releases ~ 1 MeV, occur with very slow reaction 

rates. 

 The electroweak unification left us with only two basic forces within the Standard Model, 

the strong “color” force and the electroweak “flavor” force, although the unification is not 

complete because the Weinberg angle is not predicted in the SM but is determined 

experimentally. Perhaps the strong and electroweak forces are related and hence all SM forces 

are unified. In that case leptons and quarks are related and there would be transitions between 
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them. The proton would then be unstable, in clear contradiction to experiment (and our continued 

personal existence).  

The unification mass scale, MGUT, of a Grand Unified Theory (GUT) must be large enough 

so that the decay rate for protons, 4/1~ GUTp MΓ , is less than the rate limit set by experiment. 

There is no fundamental symmetry imposing a conservation law that we know of which requires 

proton stability. “Baryon conservation” is simply put in by hand. What mass scale is there where 

the strong, weak, and electromagnetic forces are of equal strength? In order to answer that 

question we need to first explore how the strength of a force depends on mass scale. 

The coupling constants "run" in quantum field theories due to vacuum fluctuations. The 

mathematical detail for “running” the couplings has been deferred to Appendix D. We assert 

here that we know how to “evolve” or “run” the coupling strengths with mass scale. We start at 

the Z mass. Let us see where the running of the couplings of the three forces in the SM leads us. 

There are three and not two because there are three distinct gauge groups, SU(2) of the weak 

interactions, U(1) of the electromagnetic, and SU(3) of the strong, and each gauge group has a 

universal coupling constant. The Weinberg angle was determined experimentally, not as part of 

unification. 

In general, the strength of the interaction depends at the distance probed in quantum field 

theories. We expect that a fine structure constant varies “generically” with mass scale Q as, 

1/α(Q2) = 1/α(m2) + b[ln(Q2/m2)]. A particular theory, SU(3) - strong, SU(2) - weak, U(1) – 

electromagnetic, defines the b parameters, which represent the effects of specific quantum loops 

of bosons and fermions comprising that theory and its’ couplings. 

In electromagnetism the e+e- vacuum pairs shield the “bare” charge which means that 

electromagnetism gets stronger at shorter distances; b = - 2 fn /12π, where nf is the number of 

fermions that can make virtual pairs at a scale Q. In SU(3) the strong interactions become weak 

at short distances. This is because the gluons themselves carry a color charge whereas the photon 

is uncharged. Likewise the W and Z, SU(2), self-couple having triplet vertices in the absence of 

fermions such as ,Z W W W W Wϕ ϕ ϕ ϕ ϕ ϕ  - because they carry weak “charge”. Thus we expect that the 

SU(2) coupling strength also gets weaker with increasing mass scale due to an anti-screening of 

the weak charge. 

We use precision data at a mass Mz to look for possible unification of the strong, 

electromagnetic, and weak forces. A representative data set is quoted in Eq.6.4. The labels for 

the couplings are the SU(N) number N.  The strong and electromagnetic values were already 

given in Chapter 4. For technical reasons we must use 3/5 of the inverse of the electromagnetic 
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coupling constant, 1/ ( ) 128.3ZMα = , minus the weak coupling. The weak coupling constant is 

30/1~Wα  = 2α , as quoted in Appendix A. 

 α3
-1 (MZ)= 8.40 = 1/0.119 

 α2 
–1 (MZ)= 29.67  6.4 

 α1
-1 (MZ)= (α 

–1 (MZ) – α2 
–1)(3/5) = 59.2 

We then “run” the constants with b values, b3 = (33 – 2nf)/12π , b2 = (22 - 2nf – ½)/12π , 

and b1 = -2nf /12π  (see Appendix D). The fermion loops contribute the same negative 

(screening) constant for all three coefficients. The strong and weak b coefficients have, in 

addition, anti-screening terms due to the “charged” bosons, which dominate the overall behavior. 

A factor which is sometimes omitted in textbooks has also been added for a Higgs boson loop 

contribution to the weak interaction coefficient, b2. The reader is most strongly urged to use the 

information provided here and “run” the constants for herself. The experience that is derived for 

the sensitivity of the couplings to large mass scales is well worth the effort. 

Keeping track of the number of “active” fermions (fermions with masses less than the mass 

scale Q), nf, we arrive at the coupling constant behavior as a function of mass given in Fig. 6.3. 

The 3 forces approximately converge to a value, 43/1~GUTα , at a mass of GeVMGUT
1410~ .  

This is a very non-trivial result. The forces appear to be unified at a very high mass scale, which 

is not terribly far from the Planck mass. 
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Figure 6.3: Running of the inverse of the SM coupling constants as a function of the mass scale starting at the Z 
mass. We run both up and down in mass from the Z roughly between limits of ,( )QCD PLMΛ . 
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The result of following where the run leads us is a second implication that there is no new 

physics that intervenes strongly over an enormous range in masses, from the Z mass to the GUT 

mass scale. That is another extremely non-trivial conclusion.   

6 - Why is charge quantized? 
 

There appears to be approximate unification of the couplings at a mass scale MGUT ~ 1014 

GeV. The forces which we observe to be distinct in the SM at energies < 1 TeV are 

manifestations of the same GUT force. Since the strong force is what distinguishes between 

quarks and leptons that must mean that quarks and leptons are in some real sense the same 

particles. Therefore, we should combine quarks and leptons into GUT multiplets, where the 

simplest possibility for a GUT symmetry group, SU(5). In some way, with dynamics yet 

unknown to us, the SU(5) group breaks down into SU(3), SU(2) and U(1) subgroups at our 

present day mass scales. 

 A possible SU(5) fundamental representation for the first generation is shown below. 

Remember the three colors possessed by quarks, which means that the d quark appears three 

distinct times in the multiplet. 

 [dR dB dG e+ νe] : 3(-1/3 ) + 1 + 0 = 0 6.5 
 

This seemingly innocuous statement has far reaching consequences. Since the sum of the 

projections of a group generator in a group multiplet is = 0. For example, in quantum mechanics 

the angular momentum projection sum of m is zero for a multiplet labeled by angular 

momentum, 0m
−

=∑
)
) .  Charge, Q/e, (it being the GUT coupling),  must be quantized in units of  

the electron charge. In addition, we see that quarks must have 1/3 fractional charge because there 

are three colors of quarks - SU(3). We now understand why charge must be quantized and why 

quarks have 1/3 integral charge. It is because quarks and electrons are related in SU(5).  In the 

SM we recall that charge quantization was simply put in by hand. 

In addition, the unification of the three coupling constants allows us to predict the 

relationship between the electromagnetic and weak couplings. Recall that we simply introduced 

the Weinberg angle and were obliged to take its’ value from experiment. Now, however, we 

know that the GUT has a single gauge coupling constant. Thus, α and αW must be related. The 

SU(5) prediction is that 8/3/sin == WW geθ , sin2 θW = 0.375. This prediction clearly only 

applies at the GUT mass scale, MGUT. 
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However, we now have learned how to run the coupling constants. Thus, we can take the 

GUT prediction back down to the Z mass where the Weinberg angle has been very accurately 

measured. When we run down in mass the EM coupling decreases and the weak coupling 

increases (Fig. 6.3). Hence the Weinberg angle decreases. The prediction, which we give without 

proof, is that sin2θW(MZ
2) ~ (3/8)/[1 + b[ln(MZ

2/MGUT
2)], with b = 255 ( ) /18GUTMα π . The 

numerical result, that sin2θW(MZ
2) = 0.206, is in approximate agreement with the measurement of  

θW , sin2θW = 0.231, although the agreement is well outside the error on the experimental data.. 

Clearly, this is a very significant prediction of a GUT model. The interested student is 

encouraged to derive this result and then to numerically evaluate the expression for the Weinberg 

angle. 

In addition to the prediction for the coupling constants there are GUT mass relations. Since 

quarks and leptons of the same generation are in the same GUT multiplets, see Eq.6.5, they have 

the same mass. The prediction, at the GUT mass scale, is in only rough agreement with 

experiment at the GeV mass scale. 

 md = me      (3-9) MeV = 0.5 MeV 
 ms = mµ      (60 - 170) MeV = 105 MeV 6.6 
 mb = m τ      (4.1 - 4.8) GeV = 1.78 GeV 

It is difficult to precisely define the masses of the permanently confined quarks, as they are 

not an observable of an asymptotically defined quantum state. Therefore, in Eq.6.6 a range of 

possible masses is indicated. Still, these relations are not well satisfied.  They simply validate 

what we mean by “generations” - a pair of quarks and a charged lepton of “similar” mass. 

There is some progress that can be made by taking the prediction to be valid at the GUT 

scale and then evolving the masses down to currently available energies. This procedure leads to 

generally improved agreement. We note in Fig. 6.1 that typically the quarks are heavier than the 

leptons. That fact can be roughly understood because the quarks have strong interactions, so that 

the quark masses, “run” from the GUT scale to the GeV scale, evolve more rapidly than the 

lepton masses, rather as the coupling constants do. Therefore, the quarks are expected to be 

heavier than the corresponding charged leptons. For example, the successful prediction that, 

~ 2.9bm mτ , follows from SU(5) after running the masses to a scale ~ 1 GeV (see Appendix D).  

 However, until the GUT gauge group is experimentally known and until the assumed GUT 

breaking mechanism is understood the question of quark/lepton mass relations will not yield 

much in the way of precise predictions. 

7 - Why do neutrinos have such small masses? 
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The neutrinos in the SM were taken to be exactly massless, whereas we only know for sure 

that their masses are quite small on the scale of lepton and quark masses. This assumption is 

largely a question of economy, because there is no gauge condition requiring a massless 

neutrino. In contrast, the gluon and photon are gauge bosons and are required to be massless by 

the exact and unbroken gauge symmetry of SU(3) and U(1). 

 There is, therefore, no surprise if neutrinos possess mass and no problem absorbing a 

massive neutrino into the SM, just as massive quarks and charged leptons are basic particles in 

the SM. At worst, there are another three mass parameters and another four parameters 

characterizing another weak mixing matrix llV ′ . Note, however, that if neutrino mass exists there 

can be flavor changing leptonic reactions, just as there are for quarks. For example, 

eeee ++→+→ µγµ , are then allowed. At present, no such muon decay modes have been 

observed. However, GUTs theories naturally possess lepton number and baryon number 

violation. 

Direct kinematic measurements of neutrino masses yield results consistent with zero. There 

is, however, an experimental reason for imagining that a small neutrino mass might exist. The 

critical mass density for the Universe is ~ 1 p/ m3. Below that density the Universe will continue 

to expand forever. At that density the Universe is “flat”. Experiment, for example the cosmic 

microwave background temperature anisotropy, indicates that the Universe is flat. Because the 

observed density of ordinary matter is very small, we need a candidate to supply the mass needed 

to make the Universe flat. 

 The photon ( ~ equal to the neutrino) to baryon ratio is known from the cosmic 

background blackbody radiation measurements to be ~ 109. Therefore, if neutrino masses of ~ 

100 eV existed, they would supply the missing critical mass density required for a flat geometry 

for the Universe. We will see that the mass differences recently observed for neutrinos are much 

less than 100 eV, so that this explanation for the missing mass density is probably not viable. 

The GUT hypothesis allows us to make a statement about why the neutrino masses might 

naturally be light. There are two widely separated mass scales, the QCD/EW and the GUT. 

Assuming there are both active light neutrinos and inactive heavy neutrinos with masses 

comparable to the   GUT scale, we state without proof (the “seesaw” mechanism) that it is 

natural to have neutrinos with “small” characteristic masses, which means small on the quark 

scale. Using typical values for the masses of the three quark generations, we expect a 

generational hierarchy for neutrino masses. 
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 mν ~ mq
2/MGUT ~ 10-12 -10-6 -10-2 eV 6.7 

There is thus an assumed natural “generation” structure for the neutrinos, which follows 

from the quark mass regularities gathered under the concept of generations. Recent neutrino 

oscillation results indicate a non-zero neutrino mass difference of ~ 0.1 eV. The neutrinos then  

“mix” or change “flavor” with time, much as neutral B or K mesons “mix”. For a neutral particle 

with a fixed momentum, different neutrinos would have different energies, 

PmPmPE 2/~ 222 ++= . As time goes forward after production, the state would oscillate in 

flavor since the states would have different frequencies, ω*
=E , and the “beat frequency” 

between two states, �Pm 2/~ 2∆∆ω , depends on the difference in energy between the two states 

of different mass. There is an extensive worldwide experimental program in place to study 

neutrino oscillations at present. Unfortunately, the topic is beyond the scope of this text and we 

just indicate some of the highlights of the results of this program.  

Data on neutrino oscillations are shown in Fig. 6.4. The mass differences between weak 

eigenstates are comparable to the estimate made in Eq.6.7 for the third generation neutrinos.  The 

atmospheric neutrino oscillation result is ∆matm ~ (0.03 – 0.1) eV. The other generation neutrinos 

are expected to be lighter. Indeed, the solar neutrino data set indicates a substantially smaller 

mass difference is responsible, ∆msun ~ 0.01 eV. 

 

 

 
Figure 6.4: Experimental data on the mixing of neutrinos which oscillate in flavor with time. The allowed areas of 
mixing angle and mass difference squared are shown for different experiments and different flavor of neutrino [ref. 
2 – with permission], a) refers to atmospheric neutrinos, while b) refers to solar neutrinos. 

a) 
b) 
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We note that, in the case of neutrinos the mixing appears to be ~ maximal, 2sin 2 ~ 1θ , 

while for quarks the mixing was small and the mixing matrix was almost diagonal.  We really 

have no clue yet as to why the quark and lepton mixings are so different. 

It is not our purpose to expound on neutrino oscillations, merely to note that such 

oscillations require a non zero mass for the neutrino. The GUT hypothesis explains why the 

masses are very small with respect to the masses of the other SM particles. It is not yet 

experimentally determined how we go from mass differences and mixing parameters to the 

masses of the weak eigenstates themselves. Recent precision data on the cosmic microwave 

background implies the limit mi < 0.24 eV.  One solution among many is shown in Fig. 6.5 

where the masses of the weak eigenstates and the mixture of the leptonic flavors in that 

eigenstate are indicated.  

 
Figure 6.5:  A possible scheme of neutrino weak eigenstates, iν , and their associated masses. Also indicated are the 
fractions of the flavor eigenstates, τµ ννν ,,e  which make up the weak eigenstates. The mixing of states is large [ref. 
3 – with permission]. 

 

From the cosmic microwave background we know the present neutrino temperature is ~ 1.9 

degrees K and the number density is ~ 300/cm3.  Therefore, with the mass quoted above, the 

neutrinos cannot be the candidate for the “dark matter” which we discuss below because they 

would contribute only  ~ 0.001 of the critical mass density of the Universe. 

 

8 - Why is matter (protons) ~ stable? 

There is no gauge motivated conservation law making protons stable. Baryon conservation 

is simply imposed in the SM by requiring, ad hoc, the absence of quark to lepton transitions. The 

m(eV) 
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GUT hypothesis leads us to a more incisive reason for the apparent absolute stability of matter. 

The proton is indeed unstable, but possesses a very long lifetime.  

Since quarks and leptons have the same GUT couplings and exist in the same GUT 

multiplets, we expect transitions between them. Indeed, in SU(5) and other GUT models there 

are  “leptoquarks” with masses of order the GUT mass scale, which possess both flavor and color 

and induce quark ↔  lepton transitions. What the GUT hypothesis brings to the discussion is a 

well-motivated high mass scale that makes the proton lifetime quite long. 

Thus we expect protons (uud bound states) to decay via the leptoquark mediated reactions 

deuu +→+ +  and ddu +→+ ν . Hence p→e+  + πo or ν + π+ since the pi mesons are quark-

antiquark bound states, duanddduuo == +ππ , . The pion mass is ~ 0.14 GeV while the proton 

mass is ~ 0.94 GeV which means the reaction is exothermic, or energetically allowed.  

On dimensional grounds, i.e. decay width proportional to the virtual leptoquark propagator 

squared ~ 4
GUTM − , the proton lifetime should be Γp = 1/τp ~ αGUT

2(Mp/MGUT)
4Mp  or τp ~ 4 x 1031 

yr. The estimate is in direct analogy to the estimate we previously made for the muon lifetime.   

The expected lifetime is very long time since the age of the Universe is “only” ~ 1010  yr. Thus 

matter is operationally, not absolutely, stable in this view. 

The easiest final state to use in searching for proton decay is e+ +πo. The current 

experimental limit on the proton lifetime is ~ 1032 yr. The limit is in disagreement with a much 

more careful estimate of the p decay lifetime in simple SU(5) GUT models. Thus we need to 

look a bit harder at the grand unification scheme. We have gained some insights about the open 

questions we had, but the unification is not actually as good as we might have hoped.  We will 

seek improvements. 

9 - Why is the Universe made of matter? 
 

The present state of the Universe is very matter-antimatter asymmetric. Basically, there is 

no evidence for any primordial antimatter in the Universe. For many years we have known that 

the necessary conditions for such an asymmetry are that CP is violated, that baryon number is 

not conserved, and that the Universe went through a phase where it was out of thermal 

equilibrium. Now, we have already discussed the fact that the existence of three generations 

allows for CP violation and the initial data on the “unitarity triangle” (see Fig.6.2) indicate that 

the CKM matrix has complex elements. CP violation has been observed in both K and B meson 

decays. 
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The GUT has, of necessity, baryon non-conserving reactions due to the transitions induced 

by the lepto-quarks. We have already assumed that they are heavy, in order to explain the quasi 

stability of the proton. Thus the chance to explain the matter asymmetry of the Universe exists in 

GUTs, although agreement of the data on the baryon to photon ratio, NB/Nγ ~ 10-9, with a 

detailed calculation is probably not plausible. At least we have made some progress in that the 

dominance of matter arises naturally in a GUT model and is not simply an ad hoc assumption. 

Unfortunately, the SM does not contain sufficiently large CP violation. 

6.5  SUSY - p Stability and Coupling Constants 

We know that there are some problems (see Fig. 6.3) with precise unification of the 

coupling constants and the detailed limits on the proton lifetime. These problems, and others like 

the Weinberg angle, can be solved by invoking a new hypothesized symmetry of Nature, called 

supersymmetry (SUSY). This is a symmetry, which relates fermions and bosons, something that 

we have no indication of or hint of in the SM. 

The generators of this symmetry contain both the familiar Poincare space-time generators 

and a spinor connecting spin J states to J-1/2 states. Naturally, the realization of this symmetry in 

Nature would mean that there are super partners of all the SM particles that differ by ½ unit of 

spin. There is no experimental evidence for any of these partners, so the symmetry must be badly 

broken so as to give a large mass, at present experimentally inaccessible, to all the 

supersymmetric particles. Present limits on the mass of SUSY partners of quarks is ~ 200 GeV. 

So far we have made no progress, at the expense of doubling the number of fundamental 

particles. Why would we embark on this daft seeming, experimentally unmotivated, enterprise? 

Recall that in a quantum loop calculation the fermions and bosons contribute with opposite 

signs (see Chapter 4 where top increases the W mass while Higgs contributions decreases the W 

mass). Since each fermion now has a boson super partner with the same mass, unbroken SUSY is 

very stable under radiative corrections since the loop contributions of the partners cancel. Recall 

that the loop integral also depends on the mass of the particles in the loop (see Chapter 4).  

Therefore, “broken” SUSY will help solve the “hierarchy problem” – the radiative stability 

of the two widely different mass scales (EW and GUT) - only as long as the masses of the super 

partners are not too large. We have traded radiative stability from the GUT mass scale for a 

proliferation of new and unobserved particles. We argue that the masses of broken SUSY must 

appear in the mass range ~ (100, 1000) GeV if SUSY is to solve the hierarchy problem. This 

mass range is accessible at the LHC, so that SUSY will be very actively looked for in LHC 

experiments. 
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 This is fine, but is there presently any “evidence” for a “SUSY - GUT”? Alas, we have 

only rather indirect indications. Let us return to the issue of grand unification. We add SUSY 

particles to the spectrum  and look again at the running of the couplings. The detailed running 

behavior is altered by these new particles in the loops. The evidence for unification is now 

stronger, with MGUT = 2 x 1016 GeV and 1/αGUT ~ 24. The graphical representation of the 

situation is shown in Fig. 6.6. Note the “kink” in the behavior of the running couplings when the 

SUSY partners become “active” at ~ 1 TeV in mass. 
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Figure 6.6: Running of the inverse of the SM coupling constants as a function of the mass scale with a partner SUSY 
spectrum added at a mass of 1 TeV. 

Clearly, the case for unification is much improved over the SM results. In particular, the 

increased GUT mass, and the strong dependence of the proton lifetime on that mass, 4/1 GUTM , 

solves the problem we had with the experimental limit on the proton lifetime. Given the 

logarithmic dependence of the couplings, it is difficult to impossible to conclude that the SUSY 

“kinks” occur at a particular mass. In the case displayed, 1 TeV is used, but there is little 

sensitivity to that mass.  

The prediction for sin2θW at the Z mass is also altered because the evolution down from the 

gauge coupling value of 3/8 at the GUT mass scale is changed. The starting point GUT mass has 

been increased and there are now additional SUSY particles in the loops for Q > 1 TeV. The 

prediction goes from 0.206 to 0.23, significantly improving the agreement with experiment, 

1/α 

Q(GeV) 



 

  216 
  

which obtains the value of 0.231. This agreement of experiment and theory for the Weinberg 

angle to a few percent with SUSY included is strong indirect evidence for SUSY. 

The hierarchy problem has to do with the existence of two mass scales that are radically 

different.  It is difficult to maintain the lower mass scale, say for the Higgs boson mass, in the 

presence of radiative corrections for loops containing particles with the higher mass scale. We 

have already mentioned this in the context of the Planck mass. Now we hypothesize that there is 

a somewhat lower GUT mass scale, which intervenes and basically erases information about the 

Planck scale if we are at lower masses than the GUT scale. The loop corrections to the Higgs 

mass are quadratically divergent. Going from GUT mass MGUT to the electroweak scale, the 

Higgs mass shift is huge.   

 ))(/(~ 22
GUTGUTH MM παδ  6.8 

To maintain the Higgs mass in the absence of SUSY two numbers of order MGUT must 

subtract to yield a small number, MH, which is very “fine tuning”. In a SUSY GUT since equal 

mass bosons and fermions contribute to these loop integrals with opposite signs, the large 

radiative corrections are canceled to very high order. Thus SUSY solves the “hierarchy 

problem”. With SUSY masses at a much lower mass scale, the Higgs mass gets radiative 

corrections due to the differences of the masses of the SUSY, SUSYM , and SM, M, partners.  

 ))(/(~ 222 MMM SUSYGUTH −παδ  6.9 

There are two predictions that are very relevant for LHC experimentation. First, SUSY 

only solves the hierarchy problem if MSUSY is < 1 TeV, and hence these states will most likely be 

accessible at the LHC.  

Second, we assert without proof that some SUSY models constrain the parameter, λ in the 

quartic Higgs potential. This parameter defines the Higgs mass but it is unspecified in the SM. 

The masses of the Higgs bosons are related to the gauge boson masses, MH < MZ in some SUSY 

models.  Radiative loop corrections then imply that the Higgs mass is increased from the Z mass 

by top and other particles in the radiative loop corrections, Eq.6.10.  An upper limit, MH < 130 

GeV is then approximately derived which is somewhat more stringent than the limit we have 

already quoted in Chapter 4.  

                              )]/[ln()/(2/3~ 22222
tSUSYtWtWH mMmMmM παδ  

Thus if SUSY is true, a light Higgs is expected, nay required, which is very accessible at 

the LHC (Chapter 5). This prediction of SUSY will be verifiable in the very near future.  In 

addition, we know that the parameter λ in the Higgs potential “runs” (see Chapter 5) and that it 

6.10 
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must be positive for there to be a non-zero value of the vacuum field (vacuum expectation 

value). We assert without proof that a heavy top quark mass is needed in SUSY models if the 

Higgs mechanism is to be preserved. The observed large top mass (Fig. 6.1) can be seen as 

another successful prediction of SUSY. It is also true that large CP violations occur naturally in 

SUSY models. Therefore, SUSY would improve the deficiency of CP violation strength that is 

present in the SM. 

 

6.6  SUSY - Cross Sections at the LHC 

SUSY particles have already been carefully searched for at the Tevatron and we could have 

introduced them in our discussion of Tevatron physics in Chapter 4. We do so now, as this fits 

the flow of the narrative. Normally it is assumed that there is a quantum number associated with 

SUSY, which, like flavor, requires pairs of particles to be produced in the interactions of SM 

particles. Unlike flavor, the symmetry is assumed to be exact, so that the lightest SUSY particle 

(LSP) is absolutely stable. Therefore, assuming the LSP is neutral and weakly interacting, most 

SUSY searches use jets (from cascade decays down to the LSP) and missing transverse energy 

(taken off by the LSP) in setting limits on SUSY particle masses. There is no evidence yet at the 

Tevatron collider for a SUSY signal. A typical spectrum is shown in Fig. 6.7. 

 
Figure 6.7: Missing transverse energy distribution for events with a photon and at least 2 jets in the final state. Also 
shown are the signals expected for SUSY quarks of 150 and 300 GeV [ref. 4 – with permission]. 
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The “background” from SM processes falls off rapidly (largely missing energy due to mis-

measurement of the jet energies), leaving the spectrum at large missing energy dominated by 

possible signals from the SUSY partners of the quarks. Clearly, SUSY quarks of 150 GeV mass 

are excluded, while 300 GeV mass is not totally excluded by this data set. Higher statistics data 

from the upgraded Tevatron will push out the mass limits. The present limits on SUSY masses, 

in the context of a particular SUSY model chosen from a plethora of possible models, are shown 

in Fig. 6.8. 

 

 
Figure 6.8: Excluded contours for SUSY partners of the quarks (squarks) and gluons (gluinos) from Tevatron and 
CERN collider experiments in a minimal SUGRA SUSY model [ref. 5 – with permission]. 

Clearly, masses of  ~200 GeV and below are excluded. Since we argued that SUSY 

particles must have masses less than 1000 GeV if they are to solve the hierarchy problem, this 

level of exclusion is already very significant. Unfortunately, the 1 TeV upper limit is not very 

crisp (see Fig.6.6), so that we should be prepared, at the LHC, to search well above it if we are to 

definitively exclude SUSY as a hypothesis, which solves the hierarchy problem. 

Let us imagine how to continue this search at the LHC. The cross sections for squarks and 

gluinos (SUSY partners of quarks and gluons) are large because they have strong couplings. The 

couplings of the SUSY partners are the same as those of their SM partners except for the 

kinematic effects of mass. The equality of the forces is needed for loop cancellations, and is 

intrinsic to SUSY.  Dimensionally, the cross section for strong production of a pair of mass M 
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particles is, σ ~ αs
2
/(2M)

2 or ~ 1 pb for M = 1 TeV. This level of cross section is quite 

observable at the high luminosity available at LHC experiments (100,000 pb-1/yr.).  

A complete calculation of the cross section as a function of SUSY mass is shown in Fig. 

6.9. The cross section for SUSY quarks and gluons is, indeed, approximately 1 pb, for a 1 TeV 

mass. 

 
Figure 6.9: Cross section for the production of gluinos as a function of their mass at the LHC. Also shown is the 
cross section for production of neutral gauge boson SUSY partners (neutralinos). These particles are 10 to 100 times 
more weakly produced [ref. 6 – with permission]. 

For a 500 GeV SUSY gluino, the cross section is 100 pb. Thus, running only a month at 1 

% of the design luminosity, 10,000 SUSY gluino pairs are created. Clearly, searching for 

strongly produced SUSY particles will be a major part of the very early LHC physics program. 

The experimenters must be prepared for incisive searches as soon as the LHC begins to function.  

6.7  SUSY Signatures and Spectroscopy 

We know that the cross section, at least for strongly interacting SUSY partners, is large 

enough for discovery at the LHC. The question is, what are the signatures for triggering the 

apparatus (see Chapter 2) on SUSY particle production? For squarks and gluinos a 

straightforward method is to look at jets and missing energy. A possible set of decay modes is 

shown in Fig. 6.10. Multi-jets, leptons and missing energy in coincidence supply a rather 

spectacular and unique signature on which to trigger and then search for signals. 
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Figure 6.10: Schematic representation of gluino pair production and sequential decays. The end of the decay chain 
comes with the emission of two LSP neutralinos. The cascade decays result in a final state with four quark jets + two 
leptons (same sign) + missing transverse energy from the LSP, 1

oχ� , and the neutrinos [ref. 7 – with permission]. 

For SUSY gauge partners there are also very unique signatures. A schematic representation 

is shown in Fig. 6.11. The Drell-Yan production of an off mass shell W results in the decay to a 

gaugino pair. The subsequent cascade decays to the LSP neutral gaugino then results in no jets 

(we can even veto on jets in the trigger if needed), three leptons, and missing transverse energy. 

 
Figure 6.11: Schematic representation of Drell- Yan production of a highly off mass shell W, W*, which virtually 
decays into a gaugino pair. The subsequent decay into leptons, neutrinos and LSP leads to a final state with no jets, 
missing transverse energy and three leptons which is a very clean SUSY signature [ref. 7 – with permission].  

Fundamentally, the SUSY searches are fairly straightforward at the LHC. There are, of 

course, other decay modes and other signatures. However, as long as pair production of SUSY 

particles is assumed, then the existence of a LSP makes missing energy a powerful tool for 

triggering the detector and selecting the SUSY events. However, a caveat is that there are always 

small regions of parameter space in more complex SUSY models where the experimental search 

is difficult. 
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The results of a detailed Monte Carlo study of gluino production at the LHC are shown in 

Fig. 6.12. The trigger is on missing transverse energy plus jets. The SM “background” from 

QCD jet production with a missing transverse energy caused by mis-measurement of the jet 

energies (see Chapter 2) falls rapidly with transverse energy. Processes with W/Z + jets, for 

example top pairs, contain real missing ET, but occur at a lower cross section than the QCD 

production of jets with a subsequent experimental mis-measurement inducing a missing ET. 

Clearly, above a missing ET of ~ 100 GeV the signal from a 250 GeV gluino dominates over all 

the SM backgrounds.  

 
Figure 6.12: Missing transverse energy spectrum for events at the LHC containing jets and missing transverse 
energy. Spectra for a 250 GeV gluino, for QCD jet events, and for W/Z plus jet events are shown. Above a missing 
transverse energy of 100 GeV the SUSY signal dominates the cross section [ref. 8 – with permission]. 

Therefore, we can search for masses above 250 GeV until we run out of events due to the 

falling of the SUSY cross sections with mass. The 250 GeV mass scale was explored for the 

LHC experiments since it roughly corresponds to the current SUSY mass reach of Tevatron 

collider experiments (see Fig 6.8) and at the LHC the experimenters want to pick up the search 

with no mass range remaining inaccessible. The LHC experiments will therefore pick up the 

SUSY search seamlessly from the CDF and D0 experiments and carry it up to ~ 2 TeV in mass. 

The upper limit is important, because if SUSY is too heavy then it is not the solution to the 

“hierarchy problem”. 
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In SUSY, there is a series of cascade decays down to the LSP. That decay topology allows 

us to determine some of the mass differences of SUSY particles at the LHC. In particular, there 

are spectacularly sharp spectral edges in specific cases. This gives us another handle on the 

spectroscopy of SUSY particles. An example is shown in Fig. 6.13. The distribution of dilepton 

masses is shown, where the events were selected to have leptons above a cut on transverse 

momentum and all jets were vetoed on.  As one can see, there is expected to be a sharp kinematic 

edge corresponding to the neutral chargino mass difference (see also Fig. 6.11 with 

2 1
o oχ χ + −→ + +� � � � . Therefore, we can go beyond the mere discovery of SUSY and learn 

something about the complex SUSY spectroscopy which would become experimentally available 

should SUSY be realized in Nature.  

 
 

Figure 6.13: Dilepton mass spectrum for events with multiple leptons and no jets. The luminosity corresponds to 1 
year at 1% of design luminosity. The sharp edge corresponds to the mass difference between the two neutral 
charginos [ref. 9 – with permission]. 

The COMPHEP program has a SUSY model available to use in evaluating cross sections.  

For example in the “MMSM” the process gggg ~~ +→+  with SUSY gluons of 200 GeV mass 

has a LHC cross section of 3.4 nb, consistent with the cross sections shown in Figure 6.9. 

 There are many complications in using the SUSY model in COMPHEP, as the number of 

particles is rather large. Nevertheless, SUSY decay branching fractions and SUSY production 

cross sections can be studied as desired.  

As an example, the particle content in the MMSM (minimal) SUSY model is shown in Fig. 

6.14. This rather long table has been truncated at the first generation of quarks. In addition to the 
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SM particles, which are the first entries, there are now four Higgs particles because the Higgs 

“sector” proliferates in SUSY. There are also two charginos, four neutralinos and one gluino. 

That completes the list of SUSY partners of the gauge bosons. The remaining entries are the 

SUSY partners of the SM leptons and quarks. Given the added complexity of the particle 

content, we do not typically invoke SUSY models in this text. The interested student can, 

however, profitably spend some time looking at the implications of SUSY dynamics using the 

tools provided by COMPHEP. 

 
Figure 6.14: COMPHEP particle table (truncated for SUSY quarks at the first generation) showing the particle 
content of the MMSM model. 

10 - What is “Dark Matter” Made Of? What is “Dark Energy” 

First we need to explain what we mean by “dark matter”. The Universe appears to have a 

critical (or closure ) energy density. The energy density of the Universe defines whether it has 

positive curvature, is flat, or has negative curvature in general relativity. There are many reasons, 

both theoretical and now experimental, in cosmology to favor a flat solution, e.g. “inflation”, and 

thus a “critical” energy density, which defines the transition from a closed (positive) and open 

(negative) geometry. 

We can try to identify this energy density with the matter that we can see.  If we simply 

count stars, there is only ~ 0.01 of the closure density which we can account for. Yet the 
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Universe appears experimentally to be approximately flat [supernovae as “standard candles”, and 

a roughly linear velocity (Doppler shift) – distance (observed brightness) relationship for 

example]. What is it made of? Parenthetically, it may seem odd, but we have no idea what form 

most of the energy in the Universe takes. This is a humbling statement as we begin the twenty 

first century. 

Instead of counting visible mass, we can try to measure the mass of an object dynamically 

by using Newtonian mechanics. This method has the advantage that it measures non-luminous 

matter too. When we try to measure the mass of a galaxy dynamically, we want to look at the 

orbital velocity (measured by using the Doppler shift) v as a function of radius. Newtonian 

energy conservation tells us that, GM(r)/r = v2, where M(r) is the mass found within a radius r.  If 

we have a uniform central mass density, M(r) ~ r3 and   v ~ r. Beyond the central luminous 

region, if all the mass is distributed as is the luminous mass, then M(r) ~ constant, and the falloff 

of velocity with distance is expected to be, v ~ 1/√r. This situation is familiar from our own solar 

system and is embodied in Keplers’ Laws. The square of the orbital period is proportional to the 

orbit radius. 

Some data on v(r) as a function of r for different galaxies is shown in Fig. 6.15. In fact, we 

do observe the expected linear rise of v(r) with r at small values of r. However, no falloff is 

observed in velocity out to a radius of ~ 60 kpc, well beyond the luminous region of typical 

galaxies. Rather we see v(r) ~ constant, which indicates M(r) ~ r for the “dark matter”, or non-

luminous, contribution to galactic dynamics. 

 
Figure 6.15: Orbital velocity of matter within galaxies as a function of the radius from the galactic center. The 
velocity is observed to be constant out well beyond the luminous core of the galaxies [ref. 10 – with permission]. 
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Is this evidence for the SUSY partners - the stable LSP relics of the Big Bang? The SM 

does not contain a candidate particle for the “dark matter”, and the newly discovered neutrino 

mass differences which are seen in the oscillation experiments (< 0.1 eV) are probably too small 

to reach the critical density (~ 100 eV for neutrinos). SUSY on the other hand certainly provides 

a dark matter candidate. In fact the fairly heavy SUSY particles, the LSP neutralinos, also have 

the expected weak cross sections, which are needed to solve the “dark matter” problem. 

The argument goes as follows. Dark matter exists at about one third the closure density of 

the Universe. The neutralino “decouples” from other particles participating in the cosmic 

expansion when the annihilation rate of neutralinos falls below the cosmic expansion rate. 

Annihilation cross sections for weakly interacting of mass M are generically, .]/[~ 22 MWA ασ  

 Thus the relic LSP abundance depends on the neutalino mass, M. A larger cross section 

means a longer coupling time, which means, in turn, lesser present abundance. A limit on the 

LSP density at the critical density places a “cosmologically interesting” mass limit as shown in 

Fig. 6.16. Numerically, it is a strong clue that a particle of mass ~ 1 TeV must have a weak 

interaction cross section if it is to be the source of dark matter. SUSY therefore “naturally” has 

the weakly interacting neutralino as a dark matter candidate. 

 
Figure 6.16: Contours in SUSY – SUGRA mass parameter space that can be excluded by LHC experiments.  In 1 
year of running at full LHC luminosity, squarks and gluinos (see Fig. 6.11) will be excluded if they have masses < 2 
TeV. In this model, that search sensitivity then easily excludes a LSP that would be a dark matter candidate. Such 
candidates are shown as being inside the 12 =Ωh contour [ref. 6  – with permission].  
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Experiments at the LHC can quickly set limits on SUSY (in a particular model incarnation 

of SUSY called SUGRA) particles such that < 2 TeV is excluded as seen in Fig. 6.16. Therefore, 

at the LHC we can probably either discover SUSY or decisively remove it as a model put 

forward to solve the hierarchy problem. LHC experiments can also set limits on the LSP mass 

that span the cosmologically interesting range for dark matter. 

Recently, evidence has been given that the energy density of the Universe is dominated ( ~ 

70 %  as of today) by “dark energy”. This stuff has negative pressure, as does a cosmological 

constant, and accelerates the expansion of the Universe. There appears to be a cosmological 

constant which is not zero, as had been assumed by Einstein. It is fair to say that, if the evidence 

holds up, we will not have a clue what the stuff is. 

 

11 - Why is the cosmological constant small? 

6.8  Cosmological Constants (and SUSY?) 

The vacuum expectation value of the Higgs field is 174 GeV, corresponding to a mass 

density (a proton has 0.94 GeV mass) of ~ 174 GeV/(0.00115 fm)3 ~ 130 p/(0.001 fm)3 ~ 1.3 x 

1056 p/m3. This vacuum field appears to exist, in that the W and Z masses have been observed 

and measured precisely. On the other hand the vacuum energy density of the Universe (“dark 

energy”) is known to be near the critical value of ~ 1 p/m3. The electroweak vacuum expectation 

value of the Higgs field is therefore ~ 1056 times larger, which presents us with a monumental 

mismatch.  

Recent observations, e.g. the supernovae measurements of velocity versus distance that 

deviate from Hubble’s linear law and indicate cosmological acceleration, support a non-zero 

cosmological constant with a magnitude near that of the critical density. That in itself is 

enormously interesting because it indicates that a vacuum energy density, such as is needed for 

inflation, indeed exists and is small on the scale of the SM vacuum energy density. 

However, this fact does not address the enormous disparity in the two values of the vacuum 

energy. We assert that a vacuum virtual loop will make different signed contributions to the 

vacuum energy for fermions and bosons as it does with other loops. If the couplings are SUSY 

related, the contribution to the cosmological constant might be reduced. Still the discrepancy is 

“astronomical”, and we truly cannot now make any plausible scenario wherein the vacuum 

energy can be made to agree with experiment in the SM + SUSY GUT context. 
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However, if SUSY is made a local symmetry, as are the other gauge symmetries in the SM, 

then many interesting conclusions ensue. Local SUSY theories, which are called generically 

“supergravity” have both positive and negative contributions to the vacuum energy. That, in turn, 

means that perhaps we can have a cosmological constant consistent with observations. However, 

we are very, very, far away from being able to make the calculation. 

12 - How does gravity fit in with the strong, electromagnetic and weak forces? 

6.9  SUSY and Gravity 

Since SUSY is an attractive theory, solving the hierarchy problem, solving the proton 

decay limit, improving coupling constant unification, improving the prediction for the Weinberg 

angle, and supplying a dark matter candidate, it seems natural to try to make SUSY a local 

symmetry by analogy to the known SM gauge symmetries.  A local SUSY theory, since SUSY 

has both spin and Poincare generators, will be a theory of general coordinate transformations. 

Therefore, a local SUSY theory, in the classical limit, contains General Relativity very naturally. 

As we have so far been unable to incorporate gravity into the SM, this fact is of extraordinary 

interest. Note, however, that the theory is classical; it is not a renormalizable quantum theory. 

A Planck scale and a SUSY breaking scale Ms ~ 1011 GeV can be invented which interact 

similarly to the neutrino “seesaw” to give masses to the SUSY partners of the SM with masses ~ 

MS
2/MPL ~ 1000 GeV. However, a local SUSY model of point particles, although it contains 

classical gravity, still is not a renormalizable quantum field theory. 

Why can’t we incorporate gravity? Let us look at the “running” of the gravitational 

coupling constant. We make the most naïve extrapolation of Newtonian classical gravity to 

assign a fine structure constant for gravity.  Because gravity alters the very fabric of space-time, 

we cannot expect such an extrapolation to the regime of strong gravity to be valid, only 

indicative.  

Recall that the Planck scale occurs when the gravitational fine structure constant becomes 

strong, αG  = cMGN �/2  ~ 1, at a mass scale MPL = NGc /�  = 1.2 x 1019 GeV.  For amusement 

we compare the “running” of the renormalizable gauge theories of the SM to this naïve 

extrapolation in Fig. 6.17. It is clear that the quadratic energy dependence of gravity on mass is 

much stronger than the logarithmic variation of the SM forces. This bad high energy behavior of 

gravity is what makes it not renormalizable. 

It is clear that there is a weak indication that the high mass scale of SM unification (the 

GUT scale) is not too distant from intersecting the running of gravity. Considering that we do not 
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have a complete quantum theory of gravity, this fact is provocative.  Perhaps with a correct 

quantum theory of gravity a complete unification of all the known forces is possible. Indeed, in a 

“string theory” –or candidate quantum theory of gravity - calculation, the appropriate scale is 

less than the Planck scale, thus reducing the discrepancy. 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6.17: The running of the coupling constants for the SM forces having logarithmic mass dependence and 
gravity, thought classically to go as the square of the mass scale. There is a very approximate unification at a very 
high mass scale. 

A renormalizable theory of gravity appears to be impossible with point particles. Using 

particles extended in one dimension (“strings”) as the fundamental entities, a well-behaved 

theory of gravity is possible but only in a space of high dimensionality. Not only does gravity 

appear naturally in this string formulation, but SUSY does also. These other dimensions are 

usually assumed to be “compactified” at length scales of order the Planck length, so that we are 

unaware of their existence. In fact, the Standard Model gauge symmetries appear to arise, almost 

naturally, in some string theories with a compact subspace. More speculatively, the number of 

generations might be related to the topology of the compact space. 
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Recently, the possibility of “large” extra dimensions has been raised as an alternative 

solution to the hierarchy problem. These extra dimensions may also throw light on the 

unification of the gravitational coupling and the Standard Model gauge couplings. If gravity 

exists in all the extra dimensions while all the other SM gauge forces are confined to 4 

dimensional space – time then the scale where gravity becomes strong might be the electroweak 

scale of ~ 1 TeV rather than the Planck mass scale. Gravity is known to have a 1/r potential only 

for distances > about 1 mm. In low energy laboratory experiments, the Newtonian potential is 

altered by a factor ~ 1 + d/r2 where d may be such that the deviation is measurable. Laboratory 

experiments are now in train to study deviations of gravity from an inverse square law at mm 

length scales. 

 Gravity with large extra dimensions is thought to be weak because it “leaks” into the other 

dimensions while the SM forces do not. This is natural because string theory is only well 

behaved in spaces with a large number of dimensions. If large extra dimensions were the solution 

of the hierarchy problem, then of necessity, there should be effects of graviton exchange, which 

might be accessible at the new generation of colliders that probe the electroweak mass scale. One 

obvious signature is missing energy caused by a graviton escaping into the extra dimensions. 

These new phenomena will be searched for at the LHC and elsewhere. The key signatures will 

be reactions, like gravity, with spin 2 Lorentz character (e.g. angular distributions) and which 

couple to mass/energy without regard to other variables (flavor blind and color blind). 

These “theories of everything” are, so far, almost devoid of testable predictions and are 

perhaps in the province of philosophy or metaphysics and not Physics. Time will tell. 
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Summary for Hadron Collider Physics 
 
• The LHC will explore the full (100 - 1000 GeV) allowed region of Higgs masses. Precision 

data indicates that the Higgs is light. If the Higgs is, in fact, light then its’ couplings can be 
explored by observing decays into ZZandWWbb ** ,,,, −+ττγγ . 

• There appears to be a GUT scale that indicates new dynamics.  The GUT explains charge 
quantization, predicts the rough value of θW, allows for the matter dominance of the Universe 
and explains the small values of the neutrino masses. However it fails in p decay, precise 
Weinberg angle prediction and quadratic radiative corrections to Higgs mass scales – the 
hierarchy problem. 

• Preserving the scales (hierarchy problem) can be accomplished in SUSY. SUSY raises the 
GUT scale, making the p quasi-stable. The Weinberg angle SUSY prediction is in accord 
with the precision data. The SUSY LSP provides a natural candidate to explain the 
observation of galactic “dark matter”. A local SUSY GUT can incorporate gravity. It can also 
reduce the cosmological constant problem. A common GUT coupling and preservation of 
loop cancellations requires SUSY mass < 1 TeV. The LHC will fully explore this SUSY 
mass range either definitively proving or disproving this attractive hypothesis. 

• If there are extra dimensions, then the LHC is well positioned to study the TeV mass scale 
where their effects should appear if they are part of the solution of the hierarchy problem.   

• The generational regularities in mass and CKM matrix elements will probably not be 
informed by data taken at the LHC. We still haven’t a clue “who ordered that”. 
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Exercises: 
 
1.  Combine the decay width scaling as M5 and as 2

'qqV to estimate the decay width of c � s 
with respect to that of b � c. Are they comparable? 

2.  Evaluate the shift in )/(/1 22 mQRα  (Appendix D) from Q = m to Q = 1000 m. 

3.  Evaluate 1
1
−α , = 59.2 at the scale of the Z mass, at the GUT mass. 

4. Evaluate 1
3
−α = 8.40 at the scale of the Z mass, at the GUT mass. Is it close to the coupling 

constant evaluated in Ex. 3? 

5.  Evaluate the Weinberg angle going from Wθ2sin = 0.375 at the GUT scale to the Z mass 
scale. 

6.  Suppose that the neutron is a bound state of udd quarks. Show that the fundamental decay 
modes ddudedd +→++→+ − ν, conserve electric charge and lead to the observable 
decays onen πνπ +→+→ +− , . 

7.  Explicitly work out the estimate for the proton lifetime for a GUT mass of 1014 GeV. How 
does it change if the GUT scale goes to 1016 GeV? 

8.  Assume that SUSY particles have the same coupling as their SM partners. Evaluate the 
point like cross section for a SUSY mass of 2 TeV, 2 2ˆ ~ /(2 )S Mσ α and compare to the 
Monte Carlo model. Does the gluon source factor, 12)/1( sM− , improve the agreement?  

9. Make a complete calculation of the gravitational problem of orbits around a distributed 
mass. Show that the velocity inside a uniform distribution goes as r, while the velocity 
outside the distribution goes as r/1 . 

10. Show explicitly that the vacuum expectation value of the Higgs field contributes an energy 
density ~ 1056 times the closure density of the Universe. 

11. Show that the closure density of the Universe, if ascribed to a vacuum field, has a vacuum 
expectation value, <φ> ~ 0.001 eV. 

12. Use COMPHEP to evaluate the Z decay width and branching fraction (Z -> 2*x). Compare 
to the data shown in Chapter 4.  What are the neutrino branching fractions? 

13. Look in COMPHEP at the Standard Model parameters and find the quark mixing matrix 
elements.  
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Appendix A - The Standard Model 
 

“Science cannot solve the ultimate mystery of nature. And that is because, in the last analysis, we 

ourselves are part of nature and therefore part of the mystery that we are trying to solve.”  — 

Max Planck  

 “There ain’t no answer, the ain’t going to be any answer. There never has been an answer. 

That’s the answer.” – Gertrude Stein 

 

We have put some of the calculational details for the SM in this Appendix. For a 

dimensionless action, S, the Lagrangian, L, and Lagrangian density, + , are defined to be, 
4 ,S Ldt d x L dx= = =∫ ∫ ∫ �

� � . The dimension of the density is then, 4[ ] ,[ ] 1M S= =� . The 

dimensions of the scalar field are those of mass, [ ] Mφ = . For example, a coupling g to a 

“potential” term quadratic in the field is dimensionless, 4~ ,[ ] 1g gφ =� .  

We begin with the SM couplings of fermions to gauge bosons by examining the free 

particle Dirac equation.  The free particle Lagrangian density, , , for a fermion with wave 

function ψ , described by the Dirac equation, with Dirac matrices γ, can be used to find the 

interaction of the fermion with the photon field, I� , by making the gauge replacement, 

ieAD −∂=→∂ , for the derivative which contains the field A and the charge e.  We will use 

ψ for the fermion fields, φ  for the scalar fields, and ϕ for the vector gauge fields. For masses, m 

is used for fermions, M for bosons.  This replacement should already be familiar, as it appears 

both in classical mechanics and in non-relativistic quantum mechanics. 

 
( ) µ

µ γψψ ∂=∂/−∂/= ,mi�
 A.1 

The gauge replacement leads to an interaction term in the Lagrangian which has universal 

coupling of the fermion current, µJ , to the gauge field, µA , with a strength e. Thus, the gauge 

replacement specifies electrodynamics. 

We now proceed by analogy to explore the other forces in the SM. Strong interactions are 

assumed to be mediated by massless “gluons” universally coupled to the “color charge” of 

A.2 µ
µ

µ
µψγψ

AJ

AeI

=

=�
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quarks, which are arbitrarily called red, green and blue (R,G,B), with a coupling constant = gs. 

Roughly speaking the strong fine structure constant is 1.0~4/2 cgss �πα = , which is ~ 14 times 

larger than the electromagnetic fine structure constant 137/1~α . The coupling is not really 

constant with mass due to quantum loop corrections. In addition the strong coupling constant is 

only well defined for distances smaller than ~ 1 fm, where it is < 1 indicating weak coupling.  

This means we cannot define the coupling at large distances as we can for electromagnetism. The 

converse is that the coupling becomes weak at short distances. Therefore, in reactions with high 

transverse momentum, or short distances, with which we concern ourselves exclusively in this 

text, we can treat the strong interactions perturbatively. This behavior of the strong force is 

another reason why we specialize to high mass, or high transverse momentum reactions, in this 

text. 

 The labels for the color quantum number, (R,G,B), have no intrinsic meaning. In the 

interest of brevity we cannot explore in any detail the reasons why we believe there are 3 colors 

for quarks. Suffice it to say that the observed strongly interacting particles, such as protons, are 

colorless because color is “confined” by the strong force that becomes strong at large distances. 

Therefore, free quarks cannot be observed. In addition, a particle like the uuu bound state (the 

nucleon resonance ++∆ , J = 3/2- , L = 0) must be overall antisymmetric under exchange since it 

is a fermion, while it is clearly flavor (uuu), space (L=0), and spin (         ) symmetric. The thick 

arrows represent the u quark spin directions in the symmetric J = 3/2 spin state. An additional 

degree of freedom, color, must exist and the state must be antisymmetric in color, if uuu is to 

represent a fermion. That there are three colors comes from comparing the cross section for 

electron-positron annihilations to muons and quark pairs. In the case of the quarks all color pairs 

in the final state must be summed over, yielding three times the cross section one expects in the 

absence of color as is experimentally confirmed. 

The covariant derivative of the fermions (colored quarks) to the vector fields requires the 

existence of the vector gauge field itself and specifies the universal interaction just as it did for 

electrodynamics. We assert that the special unitary group in N dimensions, SU(N) , has N2-1 

generators. Thus, the color SU(3), (3 for R, G, B) , group has eight colored gluons as its 

generators. The student need not be knowledgeable with group theory to understand the majority 

of the material that follows.  

The triple vertex of a quark pair and a gluon preserves the color “charge”. For example a 

GR  gluon could be emitted by a R quark that then turns into a G quark, as illustrated 

schematically in Fig. A.1.  
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Figure A.1: Schematic representation of a quark-gluon vertex where a red quark emits a red-anti-green gluon and 
changes into a green quark. 

The eight massless gluons, cg , c = 1,8, couple to the color triplet (R,G,B) quarks with a 

universal coupling sg  up to constants which are specified by the SU(3) group properties. We 

will not explore the SU(3) group constants any further in this text, as they are not required. 

Consult the references at the end of Chapter 1 for more advanced reading.  

The strong force is developed in very close analogy to the electromagnetic force. 
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Wait just a moment, you may say. The strong interactions are hypothesized to be mediated 

by massless gluons. Therefore, just as with gravity and electromagnetism, we expect the force to 

be long ranged, with forces going as the inverse of the square of the distance. However, we know 

that the nuclear force is very short ranged.  

It is far beyond the scope of this text to explore the complete theory of the strong force, 

quantum chromo-dynamics (QCD). Suffice it to say that this paradox is resolved by realizing 

that colored objects like quarks are required to be confined to spatial regions defined by the QCD 

“cutoff” parameter QCDΛ  ~ 0.2 GeV or ~ 1 fm. At this distance and larger the strong force 

becomes very strong. This great strength leads to permanent confinement of quarks inside 

colorless hadrons (like protons, neutrons) and makes the observed strong force effectively short 

ranged even though the gluons are massless.  

A.3 
 



 

  236 
  

Let us now turn to the weak force. The first theory of weak interactions was proposed by 

Fermi in the 1930’s. It concerned itself with four fermions interacting at a single point with a 

strength defined by an effective coupling constant G. This theory is not “renormalizable”, by 

which we mean that calculations of higher order processes result in infinities, indicating 

profound difficulties with the theory. A more fundamental theory was needed and it evolved in 

the late 1960’s and early 1970’s. In this theory a close analogy was again made to the successful 

theory of electrodynamics, which is the prototype of a successful, renormalizable, quantum field 

theory. 

The weak flavor group, with quark and lepton doublets as basic representations is asserted 

to be SU(2). Therefore, it has three W boson generators while the U(1) group of 

electromagnetism has a single force carrier, the Bo. Weak interactions are mediated by vector 

bosons , W = (W+, Wo, W- ), universally coupled to the weak doublets of quarks and leptons, via 

weak “charge”, or flavor. The electric charge Qe, is related to the weak isospin, IW , projection of 

the quark or lepton and the “hypercharge”, YW, which is put in “by hand”, WYIQ )2/( 3 += . 

Hypercharge is therefore defined to be YW = -1 for the doublet of IW = ½ leptons and 1/3 for 

quarks.  

The U(1) group has 1 generator – Bo with coupling g1, while the SU(2) group has three 

generators W with universal coupling g2. The W is a weak isotriplet, so that it clearly carries 

weak charge. In this Appendix we adopt the simplified, but conventional, notation of W for the 

field Wϕ , Z for Zϕ and A for the photon field γϕ . The covariant derivative is constructed to be a 

scalar in the group space because it appears in the scalar Lagrangian. The covariant derivative of 

the combined )1()2( USU ⊗  theory is: 

 1 2( / 2) o
W WD i g Y B g I W = ∂ − + ⋅ 

� �

 A.4 

The combined SU(2) and U(1) theory contains two neutral bosons. The Weinberg 

electroweak mixing angle, Wθ , exists because the physical vector bosons act on the weak 

eigenstates and not the strong eigenstates (quarks). Thus the two neutral gauge bosons quantum 

mechanically mix. We need to write the covariant derivative in terms of the observable 

electroweak eigenstates, called A and Z. A.5  
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The coupling to charge is then fixed to be Qe because that is known for the photon. 
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We now see that there is a unification of the weak and electromagnetic force into the 

“electroweak” force. The charge e is required to be related to the SU(2) coupling as, 

Wge θsin2= . The parameter θW has been measured and turns out to be a number of order 1. 

Therefore, at this fundamental Lagrangian level the electromagnetic coupling e has strength 

comparable to the “weak” coupling strength. The weak interactions are not intrinsically weak. 

Having identified A with the physical photon field and having fixed the photon coupling to 

be the charge, Qe, we gather up the remaining terms in the covariant derivative which contain the 

new W and Z bosons. 

 

 The W couples to weak isospin raising and lowering operators, so that the W is responsible 

for the “beta decay” processes where charge changes. The coupling of the Z to fermions is more 

complicated than that of the W, and depends on the weak isotopic spin projection, I3, and the 

charge Q of the fermion. Nevertheless, the Z coupling strength to quarks and leptons is also of 
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order e. In what follows we will replace the notation g2 by gW to indicate the weak, SU(2), 

coupling constant. 

 

        

The relation of the coupling constants is shown below in Fig. A.2. This figure should serve 

as an aid to memory for the couplings, which are related by the rotation specified by the 

Weinberg angle. 
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Figure A.2:  Graphical relationship of the electroweak couplings and the Weinberg angle. 
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The above description for the weak interaction has only applied to the “left handed” 

component of the quark and lepton wave functions induced by the V-A (vector minus axial 

vector) nature of the weak interactions. The fact that both charged leptons and quarks have a 

mass means that there must also be a right-handed component of their wave functions. We 

assume that the right-handed component is a weak singlet and assign a hypercharge YR = 2Ql = -

2 for leptons and YR = 2Qq = 4/3 and – 2/3 for the “up” and “down” quarks in the weak singlets. 

This assignment is consistent with the relationship already assumed for the weak left handed 

doublets, 32( )LY Q I= − . 

We should also note the general coupling of the Z to quarks and leptons shown in Eq. A.8. 

Because the weak singlets have I3 = 0, by definition, the L and R couplings of quarks and leptons 

to the Z differ. Therefore, we expect parity violating effects in reactions where Z bosons couple 

to either leptons or quarks. The mix of L and R couplings is different for leptons, “up”, and 

“down” quarks, due to their differing charge. In fact, the Weinberg angle itself can be determined 

from measuring these parity-violating effects (Eq.A.7). 

The couplings of the vector bosons to the quarks and leptons for the three basic forces 

found in the SM are specified by the gauge replacement, drawing heavily on the analogy to 

electromagnetism. The photon couples as a Lorentz vector with universal strength Qe.  

 

The weak charge changing coupling of the W to leptons is a Lorentz vector minus axial 

vector ( V – A,  parity violating left handed coupling ) with a universal strength WW eg θsin/= .  

 

The coupling to quarks (strong eigenstates) has as an additional vertex factor which is a 

unitary 3 x 3 mixing matrix, 'qq
V  which specifies the relationship of the strong and weak 

eigenstates and preserves the universal weak coupling strength. The mixing matrix of quarks for 

µγ
γγ
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coupling-qq,−+
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three generations has in all generality, 2 real parameters and 1 complex number (a total of 4 

parameters) which define it. Therefore, since the matrix elements are not purely real, CP  

(combined operation of charge conjugation and parity inversion) violation is allowed in the SM 

for these charge changing weak interactions. In fact, CP violation has been observed both in 

strange quark and bottom quark decays. 

For weak neutral currents the coupling is of similar strength, depends on quark and lepton 

quantum numbers and is flavor diagonal (by construction).  

 

For the strong interactions, the gluons couple as Lorentz vectors to the colored quarks with 

a universal strength gs. 

 

So far we have simply asserted that the weak bosons are massive while the gluons and 

photons are massless. However, we are not allowed to simply add a vector mass term into the 

Lagrangian, because it violates the gauge symmetry.  This situation is perhaps familiar from 

classical electrodynamics. A massive photon cannot preserve the gauge freedom to redefine the 

electromagnetic potential. Hence, we must indirectly induce a mass for the W and Z. 

The weak bosons must have a mass, because the weak interactions are observed to be weak 

at long distances. The situation is salvaged by introducing a new fundamental scalar field, the 

Higgs field. The Higgs is chosen to be an electroweak doublet. That is necessary if the boson 

mass and the fermion mass terms induced by the Higgs field are to be a singlet in the Lagrangian 

density. It is assumed that the field φ  possesses a vacuum state where the field is not zero, 

.>< φ  The kinetic energy term for this field in the Lagrangian density is )()(~ * φφ ∂∂� .  

For the neutral member of the Higgs doublet, the covariant derivative, Eq.A.8, with Q = 0 

is, schematically ]cos/[~ WW ZWigD θ+−∂  involving the W and Z but not the photon. 

2
3

qqZ

( sin ) / cosW W W
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g I Q θ θ
−
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The result of the gauge replacement in the Higgs Lagrangian is that new quartic terms in 

the Lagrangian containing the vacuum Higgs field squared are generated. Recall that an explicit 

mass term for the vector bosons in the Lagrangian density would be of the form, 2 2~ M ϕ−� , 

using the relativistic “length” of the momentum vector in the Lagrangian density, 
2 2( ) ( )P P M Mµ µ

µ µϕ ϕ ϕ ϕ= − = ∂ ∂ −� , (see also Chapter 1). 

Therefore the quartic terms generate specific masses for the W and Z. These masses depend 

on measurable SM parameters. 

WWZ

W

MggM

gM

M

θφ

φ
γ
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2

2
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2
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><=
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The numerical values for the masses can now be evaluated. The muon lifetime, 1/µ µτ = Γ , 

is determined by the Fermi constant G, 352 192/ πµµ mG=Γ . In turn G is an effective coupling, 

related to the fundamental coupling constant gW and the boson propagator, which at low 

momentum transfer is just the boson mass squared.  

 

The boson mass is induced by the vacuum value of the Higgs field 174 GeVφ< > = . The 

Weinberg angle can be measured in weak “neutral current processes” mediated by the exchange 

of virtual Z bosons such as ee +→+ µµ νν  (see Eq.A.12) in addition to the measurements of 

parity violating effects with lepton and quark pairs in Z mediated interactions. It is important to 
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check that the results of all these measurements give the same result as a test of the SM. Using 

the value of α  and Wθ we can find the weak fine structure constant, Wα .  

2

2

sin ~ 0.231, ~ 28.7 , sin 0.481

~ 1 /137, / sin ~ 1 / 31.6, ~ 0.63

o
W W W

W W Wg

θ θ θ
α α α θ

=

=
 

Then from the vacuum value for the field and the weak-coupling constant, the W and Z 

masses are predicted. These predictions were confirmed in the 1980’s with the experimental 

discovery of both the W and Z particles at CERN in a proton-antiproton collider. 

 
 
 

/ 2 ~ 80

/ cos ~ 91
W W

Z W W

M g GeV

M M GeV

φ
θ

= < >
=

 

 

Finally, there are excitations of the Higgs field about the vacuum state. They are to be 

interpreted as the field quanta and are, for the Higgs field, labeled as Hφ . The interactions of the 

Higgs field with the bosons of the SM are also fixed by the gauge principle. To see that, we 

expand the field about the vacuum. In addition to the quartic terms inducing the boson masses 

there are triplet, Hφ WW and Hφ ZZ, and quartic, Hφ Hφ WW, Hφ Hφ ZZ, interactions of the 

Higgs quanta Hφ with the weak gauge bosons. 

* 2 2 2 2 2
2 1 2

0

( ) ( ) ( ) / 2 ( )( ) / 2

H

H HD D g WW g g ZZ

φ
φ φ

φ φ φ φ φ φ

 =  < > + 

= < > + + + < > +
 

 
 

Clearly there are triplet couplings of the Higgs excitation to W and Z pairs due to the terms 

in Eq.A.19 which go as 2 2 2( ) [( ) / cos ]W H W W Hg WW g ZZφ φ φ θ φ< > + < > . Since >< φ~/ WW gM , 

these terms are proportional to WWMg and ZWMg  respectively. Thus the Higgs scalar couples to 

the mass of the gauge vector bosons with weak interaction strength. These terms imply that the 

Higgs will decay into W and Z pairs, if it is energetically possible. The quartic terms go like 
2 2 2[ / cos ]W H H W W H Hg WW g ZZφ φ θ φ φ+ .  

A.17 

A.19 
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The coupling of the Higgs to fermions is algebraically simple, and is given in Chapter 1 of 

the text. The mass term identification of gf<φ> with the fermion mass follows simply from the 

assumed form of the Yukawa coupling, φψψfg , and the Dirac Lagrangian density mass term, 

ψψfm  (Eq.A.1). The SM does not specify the fermion couplings to the Higgs, so that no mass 

prediction is made. However, the Yukawa interaction, which is, hypothesized means that the 

Higgs quantum couples to fermions with strength proportional to their mass.  
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Appendix B – A Worked Example in COMPHEP 
 

“Man is a tool using animal … without tools he is nothing, with tools he is all” – Thomas Carlyle 

“Learning is a kind of natural food for the mind” - Cicero 

The COMPHEP program is freeware available from its authors at Moscow State University 

at the site,  http://theory.npi.msu.su/~kryukov/comphep.html. There is an online users manual 

that is included at the site in addition to the zipped program file that you will download from that 

site. See also the references at the end of this Appendix. You are urged to read the users manual 

before going further in this Appendix.  

The COMPHEP program allows us to make Monte Carlo calculations of some 

sophistication. However, only distributions are calculated and only “tree level” diagrams are 

included.  Thus, we cannot compute individual events using the COMPHEP package alone. In 

addition, for example, we cannot compute higher order quantum “loops” with this software 

package. Likewise, decays following production are not directly encompassed in COMPHEP. 

Finally, the calculations are only made at the fundamental particle level, so that hadronization of 

the outgoing particles, e.g. quarks and gluons, is not treated in COMPHEP. There are choices for 

the distribution functions for the initial state proton. Nevertheless, COMPHEP is a complete 

stand-alone package that we can use to gain considerable insight before attempting to use more 

complex computer codes. 

Help is available using the F1 key. Control is maintained using the Enter, Escape, Delete 

keys and the up/down/left/right arrows, as is common in a DOS program. 

In the first menu a model is specified. Pick the Standard Model (SM) unless you have a 

very good reason not to.  The next menu has subtasks including “edit model”. The lower level 

tasks are “parameters”, “constraints”, “particles”, and “Lagrangian”. The parameters table is 

shown in Fig. B.1.  It is in this table that the Higgs mass is defined, and you can edit it as you 

wish. 
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Figure B.1: COMPHEP parameter table for the SM. The first entries specify the 3 coupling constants at the Z mass. 
The next 3 specify elements of the CKM matrix. The following masses define the arbitrary parameters of the SM 
(see Chapter 6) 

The “constraints” table specifies the W mass in terms of the Z mass and the Weinberg 

angle (see Appendix A). The remainder of the table defines the CKM matrix, qqV ′ , in terms of 

the parameters shown in Fig. B.1. The “particles” table is shown in Fig. B.2, and specifies the 

particles available for COMPHEP calculations. You can edit the SM by changing the 

“parameters” or “particles” table entries. There are SUSY (see Chapter 6) options in COMPHEP 

with a much extended particle table, which we do not show here in the interest of brevity. They 

appear in conjunction with choosing the “MMSM” SUSY model. 

 
Figure B.2: Particles in the SM and their symbolic names. Anti-particles are given, by convention, in upper case. 
The spins are 0, ½, and 1 and the color representations are singlet, triplet (quarks) and octet (gluons) (see Chapter 1). 
The neutrinos are defined to be massless, and all stable particles have a zero width assigned to them. 
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The “Lagrangian” shows the explicit Lagrangian that is used in COMPHEP to calculate the 

matrix elements for all reactions. You can define your own model in the first menu by changing 

any of the tables discussed so far. 

The menu task “enter process” appears next. For this worked example, we choose to study 

the gluon – gluon production of a b quark pair at a C.M. energy of 100 GeV. The dialogue screen 

is shown in Fig. B.3. 

 
Figure B.3: Screen capture for the user-entered process of gluon – gluon production of a b quark pair. Note the table 
given with the particle symbolic names for ease of use. A C.M. energy of 100 GeV is later specified. The option to 
exclude a set of SM particles from all Feynman diagrams is also available. In this case none are excluded. 

The next menu has a “view diagrams” subtask. The result for the worked example is shown 

in Fig. B.4. What is shown is the set of all SM Feynman diagrams for the process the user has 

specified. There are options in the menu to delete any set of the produced Feynman diagrams. 

However, we must remember that COMPHEP makes a full complex square of the sums of 

amplitudes representing the diagrams to get the squared reaction amplitude. Therefore, if any 

part is excluded, the result for the cross section may not be positive. If you obtain a negative 

cross section later on you should make sure diagrams are not excluded inadvertently. 
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 x 

t 

 
Figure B.4: Feynman diagrams for the process of gluon – gluon production of a b quark pair. Time goes left to right 
and space goes top to bottom by convention. The three diagrams are gluon – gluon annihilation, and b quark 
exchange. 

After we are satisfied with the diagrams we invoke the menu “squaring” that squares the 

matrix elements associated with the Feynman diagrams. Then invoke the “symbolic calculations” 

menu, which does the spin sum and average appropriate for unpolarized cross sections. We will 

use COMPHEP as a stand-alone package. Therefore, we do not write out any intermediate results 

to be used by other Monte Carlo packages. Our aim is to have the student very quickly be able to 

make a self – contained set of calculations that illuminate the subject matter of the text. 

Therefore, we only invoke the “numerical interpreter” menu task. 

We start by looking at the partonic level for the cross section. To do that we invoke 

“Vegas” in the next menu. That means performing a Monte Carlo evaluation of the matrix 

elements and phase space for the quantities in question in order to obtain the cross section. For 

simple cases the suggested 5 iterations and 10,000 Monte Carlo trials will go quickly. In other 

cases the user can appropriately choose the number of trials and number of iterations. 

Convergence is indicated by a small value of the displayed chi squared per degree of freedom.  

First we do “set distributions”. In this example we pick the scattering angle, the angle 

between the incoming gluon and the outgoing b quark. At a fixed C.M. energy, for two body 

scattering there is only one free variable and we choose the scattering angle. A list of the 

available kinematic variables whose distributions can be displayed and which can be cut on is 

shown in Fig. B.5. Given that a set of several particles can be specified, many different cuts can 

be implemented. Particles are labeled sequentially. In this case the incident gluons are 1 and 2 
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while the outgoing particles are 3 and 4, as we will see later. You can check the numbering in the 

process by examining the "subprocess" 

 
Figure B.5: Variables available in COMPHEP which can be cut on and whose distributions can be displayed. 
Options include angle, energy, mass, transverse momentum, or rapidity of a user specified set of particles. 

In the worked example the chi squared value is 0.66, indicating good convergence. The 

cross section, integrated over all angles, is 2.65 nb, with a small displayed error on the cross 

section. The angular distribution is shown in Fig. B.6. It is produced by invoking the “display 

distributions” task and working through the menus for the number of bins in the histogram, the 

linear/log choice and other menu items. The graphical window in COMPHEP is very 

straightforward, and we leave it to the reader to explore all the options. 

 
                                                                               cosθ 

Figure B.6: Angular distribution for the process g + g /  b + b at C.M. energy of 100 GeV. Note the forward – 
backward symmetry due to the fact that the initial state consists of 2 identical particles. COMPHEP units are pb for 
cross section and GeV for energy/mass. 

dσ/dcosθ 
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Now we know that we are looking at the physics of proton – (anti) proton colliders, and we 

need to specify how we define the initial state somewhat better. We are in the “Vegas” menu, so 

hit  “Escape” and go to the “IN state” menu. Use escape to back up the menu tree in general. In 

that menu select proton on proton at 14 TeV. The dialogue is shown in Fig. B.7.  

 
Figure B.7: Selection of protons in the “IN State” dialogue. There are two options for the parameterized distribution 
functions that are available. Each in turn has two choices of fitted functions. . The MRS A data fit is chosen for all 
calculations in this text, although you may want to try the other, CTEQ, fit in order to convince yourself that the 
result is insensitive to the choice of distribution functions. 

Setting up for proton – proton collisions at 14 TeV energy in the C.M., return to “Vegas” 

and calculate the cross section using 5 iterations of 10,000 trials each. The chi-squared value is 

quite large and the cross section is also substantially larger than the partonic cross section we had 

found. The problem is that the scattering amplitude has a singularity when the scattering angle 

approaches zero. This is a general feature of “Rutherford” scattering. We avoid it by setting 

“cuts” in the menu before starting the “Vegas” integration. Possible cuts are explained in Fig. 

B.8. 

 
Figure B.8: The menu to set up cuts in the matrix element before doing the phase space integration. 

The cuts chosen in this particular example are that the transverse momentum of both b 

quarks is greater than 5 GeV. Those cuts exclude arbitrarily small scattering angles because zero 
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angle means zero transverse momentum. The “Kinematics” output is shown in Fig. B.9, while 

the “cuts” table set by user input is shown in Fig. B.10. 

 
Figure B.9: Kinematics labels for particles in the worked example. Particles are numbered sequentially, beginning 
with the initial state particles. 

 
Figure B.10: User defined cuts for the worked example. The transverse momentum of both b quarks must be above 5 
GeV. The defined cuts are the logical “AND” of the input lines. 

The resulting cut “Vegas” output is shown in Fig. B.11. The value of the chi-square is still 

very large. That indicates that better-chosen cuts will be needed to obtain a well-behaved 

solution. The reader should notice that the use of COMPHEP is not just plugging into a “black 

box” and waiting for a result. As with most things in life, taste and judgment are called for. As 

we see in Chapter 4 and Chapter 5, the b cross section is, indeed, quite large at the LHC. 

 
Figure B.11: “Vegas” dialogue for proton – proton creation of a b quark pair with cuts made on the b quark 
transverse momentum. Note the large cross section, 16 microbarns and the large value of chi squared. 
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The angular distribution for the b quark in 14 TeV p – p collisions at the LHC when each b 

of the pair has a transverse momentum > 5 GeV is shown in Fig. B.12. Note the characteristic 

Rutherford scattering forward and backward scattering peaks. This feature persists from the 

gluon – gluon sub process to the overall p – p process. Note also that the cross section near 90 

degree scattering is ~ 105 times the g – g rate at 100 GeV sub energy. This indicates that much of 

the cross section arises from gluon scattering at much lower sub energies than 100 GeV, because 

of the strong energy dependence of the gluon cross section, and the strong x dependence of the 

gluon structure functions (see Chapter 3).  

 
 
 

Figure B.12: p – p scattering at the LHC, showing the angular distribution of the outgoing b quarks in p + p /  b + b. 

This completes the worked example. The reader is encouraged to try one or more of her 

own choosing. For processes without free variables, parameter variation and associated graphics 

are available. The fundamental particle subprocess can be studied in the “Simpson” menu of 

“Vegas”. The “model parameters” menu also lets us change parts of the model. For example, we 

can vary the Higgs mass. There are useful options for studying decays too. Branching ratios can 

be found by invoking the “x”, or inclusive, particle. For example entering the process H -> 2*x 

gives the decay rates of all two body Higgs decays allowed in the COMPHEP model. 

The results can also be written out as .txt files which can then be imported to other 

programs, and, for example, the results plotted. Indeed, this is the method be which many of the 

cosθθθθ  

dσ/dcosθθθθ  
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plots shown in the body of the text were made. For example, in H �b + b there are no free 

variables, and COMPHEP allows you to vary several parameters. User supplied input varying 

the Higgs mass is shown in Fig. B.13. The resultant graph of the b pair decay width as a function 

of Higgs mass appears in Chapter 5. 

 
 

 
Figure B.13: “Numerical interpreter” options in the case of H->b,B. The result is a COMPHEP graph of the decay 
width to b pairs as a function of the Higgs mass. 

The User’s Manual appears in the references. This is a comprehensive document. Two 

figures from that document are shown in Fig. B.14 and Fig.B.15. They show the general flow of 

the menus in the symbolic and numeric phases of a COMPHEP session. 

It is very difficult to fully appreciate the material presented in this text without gaining 

some facility with COMPHEP, or a comparable program. The reader is strongly encouraged to 

get the most out of this text by gaining a mastery of this program. Some “fiddling around” is 

very useful to get a feeling for the limits and the power of the COMPHEP program. 
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Figure B.14: Menu entries for the numerical phase of COMPHEP. 

 
Figure B.15: Menu entries for the symbolic section of COMPHEP 
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References for COMPHEP: 

Nuclear Instruments and Methods in Physics research A, D. Kovalenko and A Pukhov, A 389 
(1997) 

http://xxx.lanl.gov/format/hep-ph/9908288, A. Pukhov et al., archive for COMPHEP Users 
Manual  

User’s Manual, COMPHEP V33, A. Pukhov et al., Preprint INP-MSU 98-41/542 
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Appendix C – Kinematics 
 

“Everything is energy in motion” – Pir Vilayay Khan 

“In Nature things move violently to their place and calmly in their place” – Francis Bacon 

 

The units we have adopted in this text set c = 1. The kinematics of a single particle are 

specified by the vector momentum, P
�

, and the rest mass, m, of the particle. The relativistic 

momentum vector has four components, ),( PEP
�

=µ , where E is the particle energy. The 

relationship between P,E and m is defined by the velocity with respect to c, 
2/ , 1/ 1v cβ γ β= = − . The relationships, 222,, mPEmPmE +=== βγγ , can be visualized 

as a right triangle having sides m and P, with hypotenuse E, or sides and hypotenuse 1,βγ  and γ  

respectively. 

 

 

 

 

Figure C.1: The relationship of the rest mass, m, the momentum, P, and the energy, E.  

  Now we move on to the phase space for a single particle. The non - relativistic phase 

space, Eq.C.1, for a single particle is familiar from classical Maxwell- Boltzmann statistics. The 

magnitude of the particle momentum is P. The momentum component parallel to the beam is 

labeled by ||P , while the perpendicular component is defined to be TP . The solid angle element is 

Ωd  and the azimuthal angle is φ. 

 φddPPdPdPdPPd TT||
2 =Ω=

�

 C.1 

The relativistic generalization of classical one body phase space is given in Eq.C.2, where y 

is a kinematic variable called the rapidity.  The one particle phase space is simply the four-

dimensional momentum volume with a constraint that the particle has a fixed mass set by the 

sharply peaked Dirac delta function, δ. The rapidity is the relativistic analogue of longitudinal 

velocity. Particle energy is E, so as E � m,  dy � d ||v  and Eq.C.1 is recovered in the limit. 

                             E , (γ) 
 
 
m 
 
                              P , (βγ) 
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EdPdy

dydPdPEPdmPEPd TT

/

/)(

||

2224

=
==−− φδ

�

 C.2 

If the transverse momentum is limited by dynamics, we expect a uniform distribution in y 

for a particle produced in an inelastic collision if the momentum carried off by the produced 

particle is small. In general, we will see that almost all produced particles are uniformly 

distributed in rapidity, at least at wide angles, or small rapidity, with respect to the beam.  

We assert that rapidity adds under Lorentz transformation. Thus, rapidity is the relativistic 

generalization of velocity.  Note also that the one particle phase space in (y,φ ) space is 

uniformly distributed for small y. The rapidity defined above is approximated by the 

pseudorapidity variable defined in Chapter 2 if the particle masses are small with respect to the 

transverse momentum.  Therefore, the detector shown in Chapter 2 is segmented into “pixels” of 

equal one particle phase space by design. This fact also serves as a belated justification of the use 

of (η, φ ) coordinates in the plots shown in Chapter 2 and later in the body of the text. 

 We can integrate the expression given in Eq.C.2 to find the relationship between energy 

and rapidity, where the particle mass is m. 

 
222

cosh

TT

T

Pmm

ymE

+=

=
 C.3 

We can also derive this relationship using the relationship between E, P, and m. The 

identity is, 2222
||

2
TT mmPPE ≡+=− . Comparing that to the hyperbolic identity, 

1sinhcosh 22 =− yy , we can easily confirm Eq.C.3 and, in addition, find that 

|| ||sinh / , tanh /Ty P m y P E= = . 

Therefore, for massless single particles, or particles with mass much less than transverse 

momentum, ~T Tm P , where θsinEPT = ; 

 

In this particular limiting case, we can find a simple relationship between polar angle and 

rapidity. Using Eq.C.4 we can easily show that; 

)2/tan(θ=− ye                                                    

θ
θ
θ

costanh

tan/1sinh

sin/1cosh

=
=
=

y

y

y
C.4 

C.5 
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Therefore, in this limit we are justified in using the equality of the rapidity, y, and the 

pseudorapidity, η.                               

Now let us move from single particle kinematics to the kinematics of two particle systems. 

We specialize to the case of two partons contained within the proton and (anti)proton defining 

the initial state. We further assume that the frame we use is the proton-(anti)proton C.M. frame. 

The partons have longitudinal momentum PxpandPxp 2211 ==  respectively, where P is the 

momentum of the proton in the p – p C.M. The quantity x is the fraction of the proton 

momentum carried by the “parton” or fundamental constituent which exists within the proton. 

 

x1 x2  
 

Figure C.2: Schematic representation of the initial state in parton – parton scattering starting from p-p collisions in 
the p-p C.M. system. 

The mass, M, and momentum fraction, x, of the composite 1 + 2 initial state is then found 

by conservation of relativistic energy and momentum. The four dimensional momentum 

),( PEP
�

=µ has an invariant “length” of, 2MPP =µ
µ . We simply assert that these relationships 

carry over to systems of particles. For example in the initial p – p state in the C.M., 

1 2 1 2( ) ( ,0) ~ (2 ,0)P P E E Pµ+ = +
� �

. The C.M. energy squared, s, is 
2 2

1 2 1 2 1 2( ) ( ) ( ) ~ 4s P P P P E E Pµ
µ= + ⋅ + = + . The mass of the two-parton system, M, follows, 

assuming that the partons are massless and have no transverse momentum. 

 

 
2 2 2 2 2 2

1 2 1 2 1 2 1 2 1 2 1 2

|| ||

( ) ( ) ~ ( ) ( ) ~ [( ) ( ) ]
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  C.6 

A bit more algebra allows us to find M and x for the initial state in terms of x1 and x2. 
2

1 2 1 2/ ,x x M s x x xτ= = − = . A typical value, <x> for the momentum fraction of the parton 

producing a state of mass M at p – p C.M. energy s occurs when x1 = x2 or when <x> is equal 

p1 p2 

P 

 
P 
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to τ . For example, top quark pairs at the Tevatron, with M ~ 2mt ~ 350 GeV are produced at 

rest in the C.M by partons with momentum fraction sMx /~><  = 350/1800 ~ 0.2.  

Having produced the initial state, we assume it “decays” into a two body final state. 

Schematically, the reaction is 1 + 2 -> 3 + 4. This final state is what is actually observed in the 

event. In a two body “decay” the transverse momentum of each massless final state parton is a 

function of the mass of the decaying state and the decay angle, θsin)2/(43 MEpp TTT === . 

The measured values of the two parton kinematic quantities, y3, y4 and ET allow us to solve 

for the variables x, M, and θ
�

. Using results given above we can relate M and x to the initial state 

x1 and x2 thus completely specifying the kinematics for the two body process. These 

relationships follow from the conservation of energy and momentum and the definition of 

rapidity given above. It is left as an exercise for the reader to flesh out the derivation shown 

below. 

Some kinematic definitions for the two body final state are shown in Figure C.3. We note 

that the initial two body state is not the parton – parton center of momentum system in general, 

although it is, on average. Therefore, the composite state, x and M, is moving in the overall 

proton – (anti)proton C.M. system.  Thus, in the proton – (anti)proton frame the two body final 

state “decay” is not to back to back in polar angle, as it is in the two body final state C.M. frame. 

x1                x2                     x,y,M               y3, y4                                 y*, θθθθ*x1                x2                     x,y,M               y3, y4                                 y*, θθθθ*

Formation          System             Decay             CM Decay

 
 

Figure C.3: Schematic representation of two body parton scattering. The initial state partons are found in the proton 
and (anti)proton. They form an intermediate state of mass = M moving with momentum fraction x, rapidity y. This 
state then “decays” into a two body final state with measured transverse momenta, ET, and rapidities y3 and y4 in the 
p – p C.M. frame. 

 

Briefly, in the parton – parton C.M. (starred) reference frame, yyyy ˆ,ˆ *
4

*
3 −==  and, since 

rapidity is additive under Lorentz transformation, in the proton – proton C.M. , 

yyyyyy ˆ,ˆ 43 −=+=  where y is the rapidity of the two body state in the p-p C.M.  Thus the 

system rapidity y and the parton-parton C.M. jet rapidity ŷ  can be found in term of 43, yy , 

2/)(,2/)( 4343 yyyyyy −=+= �

.  

θ
�

�

,y  
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The decay kinematics requires that each massless parton has an energy/momentum of half 

the system mass, M, and transverse momentum θ̂sin)2/(MEP TT == . We can also find the 

parton-parton C.M. scattering angle in terms of θ̂cosˆtanh,ˆ =yy  (see Eq.C.4). Thus with ET 

measured for the partons and y
�

found in terms of y3 and y4 we can solve for M and θ
�

. Finally y 

and M give us x and M that can be used to solve for the initial state parton momenta, 21, xx  by 

way of 1 2(2 / )sinh / [ ]y yx M s y M s e e x x−= = − = − .  

 
y

y

esMx

esMx
−=

=

]/[

]/[

2

1                                                                         C.7 

Thus, from measurements on the two body final state we can infer the x values of both 

initial state partons, and measure the scattering angle. 
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Appendix D  - Running Couplings 
 
“Everything changes, nothing remains without change” – Buddha 
 
“You can run but you can’t hide” - anonymous 
 
 

In quantum field theory the coupling “constants” of the three SM forces are put into the 

theory explicitly in the covariant derivative, which enters the basic Lagrangian (Appendix A). 

These couplings are found to have “effective” values, which are functions of the mass scale at 

which they are examined. This effect is due to quantum corrections caused by higher order 

diagrams. 

This effect was first derived in Quantum Electrodynamics, QED, where it was found that 

the electron charge increases as we look at small distances. This is understood in physical terms 

as due to the existence of virtual electron- positron pairs in the vacuum due to the virtual decays 

of virtual photons emitted and then reabsorbed by the charge. This is charge screening. In a 

polarizable dielectric medium an induced dipole moment reduces the applied field, which 

effectively reduces the squared charge by the dielectric constant, ε. Thus, the effect is called 

“vacuum polarization”.  

A schematic representation of an electron – positron loop is shown in Fig. D.1. 

 e 

γγγγ 

e 
 

Figure D.1: A photon virtually decays into an electron – positron pair with that pair subsequently annihilating into 
the original photon.  

The electron charge is shielded by virtual γ fluctuations into e+ + e- pairs on a distance scale 

set by the electron Compton wavelength, e�  ~ c
0

/me ~ 400 fm. Thus α increases as the mass 

scale decreases and electromagnetism gets slowly stronger as the mass increases. Conceptually 

the “bare” charge is surrounded by pairs. One particle of the virtual pair is attracted to the 

oppositely charged main charge, thus polarizing the vacuum. Therefore, an observer at a given 
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distance from the charge will see the charge reduced, or “shielded”, by an amount that decreases 

with distance.  

We assert that the “renormalized”charge at first order in perturbation theory, )( 2QeR , is 

given in Eq.D.1, where m is the electron mass and Q is the mass scale at which the charge is 

measured.  

 2 2 2 2 2( ) ~ [1 /12 ln( / )]Re Q e Q mα π+  D.1 

 

This preliminary look gives us an initial feeling for the effect. It is first order in the fine 

structure constant and depends logarithmically on the mass scale of observation Q.  Let us now 

go ahead with a bit more mathematical detail to see if we can understand that dependence. The 

schematic representation for the charge of a very heavy source, i.e. one suffering no recoil in 

emitting a photon, is shown in Fig. D.2. The photon interacts with a fermion. The lowest order 

correction occurs when the photon makes and then reabsorbs a virtual fermion pair prior to 

interacting with the external fermion. 

 

Figure D.2: Kinematic definitions for a very heavy source of photons interacting with a fermion of mass m in a) 
lowest order and in b) with a virtual electron – positron loop in the next highest order. 

To lowest order, the charge, e, is the “bare” charge that appears in the Lagrangian, and the 

propagator is the Fourier transform of the Coulomb interaction potential, V(r). In the Born 

approximation we take the initial |i> and final states |f> to be free particle plane wave states 

leading to the amplitude A; )()(~)(~|)(|~ ... qVrdrVerderVeirVfA rqirkirki
if

��� 111111
=>< ∫∫ − . The 

momentum transfer q is, 2 2| | , f iq q q k k= = −
� �

� �

. In the case of electromagnetism,  rrV /~)( α , 
2/~)( qqV α . Thus the reaction amplitude in lowest order is 2/~ qAo α  (Rutherford amplitude). 

 The loop integral is indicated in Eq.D.2 and it can be roughly read off from examining Fig. 

D.2. The factors of γ are Dirac matrices that refer to the vector nature of the interaction vertex 

(see Appendix A) and the “slash” notation is defined to be, µ
µγaa =/ . Knowledge of the Dirac 

matrices is not needed to roughly understand the running of the charges.  

a) b) 

q 



 

  262 
  

The change in the amplitude due to the existence of the term shown in Fig.D.2.b is; 

 

 2 4 2 2~ (1/ )[1/( )][1/(( ) )](1/ )A dk q k m q k m qδ α / + − / +/∫  D.2 

 

The two terms in square brackets represent the two fermion propagators, 
2 21/( ) ( ) /( )k m k m k m/ + = / + − , of the particles in the loop, and all loop momenta, k, are 

integrated over. We can work through the integral, which we find to be divergent. The divergent 

behavior is due to the terms, δ ∫ )k/m(dk~A 24  ∫ )kln(~k/dkk~)k/m( 432 .  

However, we can still extract the behavior with mass scale of the amplitude A by 

imposing a cutoff parameter, Λ, on the loop momentum. We can then define a “ renormalized” or 

effective coupling constant, Rα , such that the total amplitude, AAA o δ+~ , to first order is of the 

same form as the lowest order amplitude at a given momentum transfer, 22 /)( qqA Rα≡ , with 

)]/ln(12/)(1)[()( 22222 mqmmq RRR −+= πααα . Screening by the electron – positron pair makes 

Rα  < α . Comparing to Eq.D.1 we see that we have reproduced the lowest order expression for 

the behavior of the electric charge, with mass scale 2 2Q q= − . 

 

It is plausible that when the calculation is done to all orders in perturbation theory the 

renormalized coupling constant is also calculable [1/(1-x) = 1 + x + x2 + x3 + …] and retains the 

same logarithmic dependence on the mass or momentum transfer scale at which the reaction 

proceeds that it did in lowest order.  

It is most natural to see how the inverse of the fine structure constant “evolves”, as quoted 

in Eq.D.4. The difference in the inverse of the renormalized fine structure constant depends 

logarithmically on the ratio of the squares of the masses, Q and m, at which they are observed.  

 

 

D.3 

2 2 2 2 2

2 2 2 2

( ) ( ) /[1 ( ( ) /12 ) ln( / )]

1/ ( ) 1/ ( ) 1/12 ln( / )
R R R

R R

Q m m Q m

Q m Q m

α α α π
α α π

= −

= −
D.4 

)]/ln(12/)(1[/)(~

)]}/ln()/[ln(12/1{/~
22222

22222

mqmqmA

mqmqA

RR −+
−+Λ−

παα
παα
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For electromagnetism, we can take the charge to large distances as a way to operationally 

define α. Conventionally, the fine structure constant is defined at large distances, or low masses, 

to be α = α(0) ~ 1/137. Experimentally, at the Z mass, α(MZ) = 1/129. The coupling only 

becomes strong, 0)(/1 2 =ΛQEDα , at an enormous energy, (6 / )~QED me π αΛ  (see Chapter 6 on the 

GUT scale). Thus, the running coupling constant scheme can be used for all mass scales of 

practical interest. 

In QCD a similar effect occurs, but with the added complication that the gluons mutually 

interact whereas the photons are uncharged. The mutual self-coupling of gluons leads to the 

result that the strong coupling strength actually decreases as the mass increases, opposite to the 

behavior of electromagnetic charge. The anti-screening of the colored gluons overcomes the 

screening effects of the colored quarks. As seen in Appendix A (Fig.A.1) the virtual emission of 

colored gluons will remove quark color from the vicinity of the “source” quark, and that results 

in color anti-screening. The “running” of the coupling constant in QCD means that as Q2 --> ∞, 

αs(Q2) --> 0.  

 2 2 2 21/ ( ) 1/ ( ) [(33 2 ) /12 ]ln( / )s s fQ m n Q mα α π= + −  D.5 

In Eq.D.5 nf is the number of fermion generations that is “active”, or above threshold to 

occur in the quantum loops at the mass scale Q in question. The fermion term is negative 

(screening) with a magnitude familiar from QED (Eq.D.4).  The gluons appear as the positive 

factor 33 indicating that they anti-screen the color charge. Clearly the gluon effect dominates and 

the overall effect is anti-screening. 

 This has profound implications for quarks. As the distance increases the force gets 

stronger, ultimately causing permanent confinement of quarks within the hadrons, such as 

protons, which are themselves colorless. Conversely, the strong interaction becomes weak at 

high mass scales. Indeed, that is why we focus on high transverse momentum phenomena in this 

text.  The strong interactions are simple and perturbatively calculable in this region of phase 

space. 

For the strong interactions, we therefore cannot separate the charges since the coupling is 

strong at large distances (low energies). Instead, using Eq.D.5, we define an energy QCDΛ  where 

the interactions become strong, 2( ) ~s QCDα Λ ∞ , 0)(/1 2 =ΛQCDsα , QCDΛ  ~ 0.2 GeV, The strong 

coupling is observed to run (Chapter 4) and has been taken to the Z mass, 2( ) ~ 0.13s ZMα . Thus 

the strong fine structure constant is well defined for mass scales > 0.2 GeV. 
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 2 2 2( ) 12 /[(33 2 ) ln( / )]s f QCDQ n Qα π= − Λ  D.6 

 The situation for the weak interactions is analogous to the strong interactions. The weak 

bosons are themselves carriers of the electroweak charge, and they anti-screen. The fermions 

screen, but the net effect is again anti-screening. The result is that, 

                          2 2 2 21/ ( ) 1/ ( ) [(22 2 1/ 2) /12 ]ln( / )W W fQ m n Q mα α π= + − −  

 The factor of 22 comes from anti-screening of the weakly “charged” W and Z, while the 

fermion term is now familiar. The new term of –1/2 is due to the existence of Higgs in the 

electroweak loop. Note that, as with strong interactions, there is a mass scale where they become 

strong. However, it is so low as to be operationally uninteresting.  

These three coupling constants are used in Chapter 6, along with their supersymmetric 

generalizations. In addition, we quote the evolution of the W and Z mass due to quantum loops 

in Chapter 4, the running of the strong coupling in Chapter 4 and the evolution of the Higgs mass 

with mass scale in Chapter 5.  Clearly, the “running” of constants appearing in the Lagrangian is 

a basic effect of quantum field theory. It is also now part of the precision measurements available 

in high energy physics. 

An example in the grand unified theories is the running of the masses with the scale. The 

mass of a state can be defined by the behavior of the propagator. For example the massless 

photon has a propagator 21/q . However, the propagator is modified by quantum loops. 

Therefore the mass itself runs. Assuming the SU(5) relation that the tau lepton and b quark have 

equal mass at the GUT scale, the mass ratio at a lower scale Q is:  

 
 

                                
2 2

3 11/(4 ) 1/(16 )
3 1[ ( ) / ( )] [ ( ) / ] [ ( ) / ]b b

b GUT GUTm Q m Q Q Qπ π
τ α α α α −=                       D.8 

 

This relationship predicts fairly well the observed mass ratio at ~ GeV mass scales. The 

student is encouraged to plot Eq.D.8 and examine the running behavior of the masses. Note that 

the weak interaction does not contribute to Eq.D.8 because the Dirac mass term, or self-energy 

Feynman diagram, connects left and right handed Dirac spinors and the weak interaction is 

solely left handed, by construction. Note also that the reason that quarks are heavier than charged 

leptons at GeV mass scales is that quarks have strong interactions and the strong interactions are 

strong at low mass scales. 

D.7 


